设A=(aij)为n阶方阵,且r(a)= 证明向量 AX=0的基础解系
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:51:50
A的秩为r,说明A的行向量和列向量的秩为r,所以行向量中必有r个向量线性无关.第二题,事实上,A与B绝对有一个是错误的,所以可以得到C与D是正确的,可以利用C的结论,0是A的n重特征值,而AX=0的解
首先,已知代数余子式Akl不等于0,所以R(A)=n-1;那么,解向量组的秩为:n-R(A)=1.即基础解系只有1个向量;计算AX,X=(Ak1,Ak2,...,Akn)^T,根据行列式性质,i(i!
这要用到两个结论,第一,|AB|=|A||B|,第二,|A^T|=|A|,所以等式左边去行列式为|AA^T|=|A||A^T|=|A|^2
由条件Aij+aij=0(i,j=1,2,3),可知A+A*T=0,其中A*为A的伴随矩阵,从而可知|A*|=|A*T|=|A|3-1=(-1)3|A|,所以|A|可能为-1或0.但由结论r(A*)=
由已知,λA*=A^T因为a11≠0,所以λ≠0所以A*=(1/λ)A^T由AA*=|A|E得AA^T=λ|A|E(1)两边取行列式得|A|^2=λ^3|A|^3(2)比较两边矩阵第一行第一列元素得a
一.matlab里和随机数有关的函数:(1)rand:产生均值为0.5、幅度在0~1之间的伪随机数(2)randn:产生均值为0、方差为1的高斯白噪声(3)randperm(n):产生1到n的均匀分布
对比A^T的各个元素即得Aij=aij再问:Aij是代数余子式,而aij只是一个数,它们的计算结果明显不同,还是不懂,能解释一下吗再答:代数余子式是一个数值
因为Aij不等于0,所以r(A)=n-1,AX=0的解的线性无关的个数为n-r(A)=1又因为AA*=|A|E=0,所以A*的列向量都是AX=0的解,所以方程组的通解可表示
将D的各行都加到第一行上,那么第一行都是3将第一行的3提出来,那么第一行的元素就都为1用第一行的元素乘以其各自的代数余子式,就是3×∑A1j=4那么第一行的代数余子式之和为4/3将D的各行都加到第二行
选B因为若|A|不等于0,则A可写成一系列初等矩阵的乘积,AB相当于对B作一系列初等变换,初等变换不改变矩阵的秩,所以AB同B有相同的秩,但是,由于AB=0,所以其秩为0,而B不等于0,所以其秩至少为
A=A^2A^2-A=0A^2-2A=-AA(A-2E)=-AA-2E=-E(A-2E)*(-E)=E所以:(A-2E)^-1=-E
5.B14.A,B,C
由A可逆,且AB=0等式两边左乘A^-1得A^-1AB=A^-10即B=0所以(A)正确
本题可以这样证,A的伴随矩阵A*(j,i)位元素为aij代数余子式Aij,由此可见,你给的题目是A的每一个元素aij等于它的代数余子式,即aij=Aij,得到A=(A*)'换种写法是A*=A'其中'是
所求行列式=012…n-2n-1101…n-3n-2210…n-4n-3……………n-2n-3n-4…01n-1n-2n-3…10rn-r(n-1),r(n-1)-r(n-2),…,r2-r1012…
根据逆矩阵的性质AB=I则有BA=I.已知ABC=I所以A(BC)=I,所以(BC)A=I.故(D)正确再问:貌似我书上的单位矩阵都是E莫非这里的单位矩阵是I?再答:是单位矩阵一般有两种记法,E和I.
因为A*A=A,所以A(A-E)=0;故A-E的每个列向量都是方程Ax=0的解,由于A-E中的列向量未必构成解空间的基,所以R(A)+R(A-E)小于等于n;又由R(A)+R(B)>=R(A+B);立
BA=A+BB=BA-AB=(B-I)A(I=identitymatrix)(B-I)^(-1)*B=(B-I)^(-1)*(B-I)*A(B-I)^(-1)*B=A(B-I)^(-1)*B*B=AB