设A=(aij)为n阶方阵,且r(a)= 证明向量 AX=0的基础解系

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:51:50
设A=(aij)为n阶方阵,且r(a)= 证明向量 AX=0的基础解系
线性代数问题设A=(aij)n*n的秩为r,则在A的n个行向量中(A)A.必有r个线性无关。为什么?设A是n阶非零方阵,

A的秩为r,说明A的行向量和列向量的秩为r,所以行向量中必有r个向量线性无关.第二题,事实上,A与B绝对有一个是错误的,所以可以得到C与D是正确的,可以利用C的结论,0是A的n重特征值,而AX=0的解

线性代数题一道设A=(aij)为一个n阶方阵,|A|=0,且A中的一个元素akl的代数余子式Akl不等于0,试证:(Ak

首先,已知代数余子式Akl不等于0,所以R(A)=n-1;那么,解向量组的秩为:n-R(A)=1.即基础解系只有1个向量;计算AX,X=(Ak1,Ak2,...,Akn)^T,根据行列式性质,i(i!

A为a11不等于0的3阶方阵且有Aij=aij (i,j=1,2,3)求detA

这要用到两个结论,第一,|AB|=|A||B|,第二,|A^T|=|A|,所以等式左边去行列式为|AA^T|=|A||A^T|=|A|^2

设A=(aij)是三阶非零矩阵,|A|为其行列式,Aij为元素aij的代数余子式,且满足Aij+aij=0(i,j=1,

由条件Aij+aij=0(i,j=1,2,3),可知A+A*T=0,其中A*为A的伴随矩阵,从而可知|A*|=|A*T|=|A|3-1=(-1)3|A|,所以|A|可能为-1或0.但由结论r(A*)=

老是我想问个问题:设A为三阶方阵,a11≠0,且aij=λAij,求|A|

由已知,λA*=A^T因为a11≠0,所以λ≠0所以A*=(1/λ)A^T由AA*=|A|E得AA^T=λ|A|E(1)两边取行列式得|A|^2=λ^3|A|^3(2)比较两边矩阵第一行第一列元素得a

用matlab编程 设A=(aij)n*n为n阶方阵,求a从1到n,j从1到n的积

一.matlab里和随机数有关的函数:(1)rand:产生均值为0.5、幅度在0~1之间的伪随机数(2)randn:产生均值为0、方差为1的高斯白噪声(3)randperm(n):产生1到n的均匀分布

设A=(aij)为正交矩阵,且绝对值A=1,试证Aij=aij,这里Aij是A中元素aij的代数余子式?

对比A^T的各个元素即得Aij=aij再问:Aij是代数余子式,而aij只是一个数,它们的计算结果明显不同,还是不懂,能解释一下吗再答:代数余子式是一个数值

设方程组的系数矩阵为A=[aij]n*n,且行列式|A|=0,而|A|中某一元素aij的代数余子式Aij不等于0,证明,

因为‍‍Aij不等于0,所以r(A)=n-1,AX=0的解的线性无关的个数为n-r(A)=1又因为AA*=|A|E=0,所以A*的列向量都是AX=0的解,所以方程组的通解可表示

设n阶行列式D=aijn=4且D中各列元素之和均为3 并记元素aij的代数余子式为Aij 试求 所有Aij之和

将D的各行都加到第一行上,那么第一行都是3将第一行的3提出来,那么第一行的元素就都为1用第一行的元素乘以其各自的代数余子式,就是3×∑A1j=4那么第一行的代数余子式之和为4/3将D的各行都加到第二行

线性代数 设A,B为n阶方阵,B不等于0,且AB=0,

选B因为若|A|不等于0,则A可写成一系列初等矩阵的乘积,AB相当于对B作一系列初等变换,初等变换不改变矩阵的秩,所以AB同B有相同的秩,但是,由于AB=0,所以其秩为0,而B不等于0,所以其秩至少为

设A为n阶方阵,且A=A^2;,则(A-2E)^-1

A=A^2A^2-A=0A^2-2A=-AA(A-2E)=-AA-2E=-E(A-2E)*(-E)=E所以:(A-2E)^-1=-E

设A、B均为n阶方阵,A可逆,且AB=0,则

由A可逆,且AB=0等式两边左乘A^-1得A^-1AB=A^-10即B=0所以(A)正确

设A为n阶非零实方阵,A的每一个元素aij等于它的代数余子式,即aij=Aij,(i,j=1,2,3,……n)证明A可逆

本题可以这样证,A的伴随矩阵A*(j,i)位元素为aij代数余子式Aij,由此可见,你给的题目是A的每一个元素aij等于它的代数余子式,即aij=Aij,得到A=(A*)'换种写法是A*=A'其中'是

设n阶矩阵A=(aij),其中aij=|i-j|,求|A|

所求行列式=012…n-2n-1101…n-3n-2210…n-4n-3……………n-2n-3n-4…01n-1n-2n-3…10rn-r(n-1),r(n-1)-r(n-2),…,r2-r1012…

设A,B,C均为n阶方阵,且ABC=I,则( )

根据逆矩阵的性质AB=I则有BA=I.已知ABC=I所以A(BC)=I,所以(BC)A=I.故(D)正确再问:貌似我书上的单位矩阵都是E莫非这里的单位矩阵是I?再答:是单位矩阵一般有两种记法,E和I.

设A为n阶方阵,且A*A=A,证明R(A)+R(A-E)=n.

因为A*A=A,所以A(A-E)=0;故A-E的每个列向量都是方程Ax=0的解,由于A-E中的列向量未必构成解空间的基,所以R(A)+R(A-E)小于等于n;又由R(A)+R(B)>=R(A+B);立

设A、B为任意n阶方阵,且BA=A+B,则AB=

BA=A+BB=BA-AB=(B-I)A(I=identitymatrix)(B-I)^(-1)*B=(B-I)^(-1)*(B-I)*A(B-I)^(-1)*B=A(B-I)^(-1)*B*B=AB