设A=,的列向量组线性无关,则R(AB)=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 08:21:40
设A=,的列向量组线性无关,则R(AB)=
设A为4*5阶矩阵,且A的行向量组线性无关,则方程组AX=B

D是否有解无法判断A秩=4AB﹙即增广矩阵﹚秩可以是4﹙唯一一组解﹚或者5﹙无解﹚.再问:这个题答案选C再答:哦,是我没有看清楚题目,以为是另外一道题,http://zhidao.baidu.com/

设A是m*n矩阵,且列向量组线性无关,B是n阶矩阵,满足AB=A,则r(B)等于多少

易知:A是m*n矩阵,且列向量组线性无关,所以r(A)=n,所以r(AB)=r(A)=n,因为n=r(AB)≤r(B)(或r(A))≤n(B是n阶矩阵)所以n≤r(B)≤n=>r(B)=n(2)此外,

设n维列向量组a1,a2,---,as线性无关,则n维列向量组b1,b2,bs线性无关的充分必要条件为

A不对!例如:a1=(1,0,0),a2=(0,1,0)b1=(0,2,0),b2=(0,0,1)两向量组都线性无关,但不等价,谁也不能表示谁B正确.因为A,B等价,即A可经初等变换化成B初等变换不改

设n维列向量组α1,…,αm(m<n)线性无关,则n维列向量组β1,…,βm线性无关的充分必要条件为(  )

用排除法选项A为充分非必要条件.若向量组α1,…,αm可由向量组β1,…,βm线性表示,则一定可以推出向量组β1,…,βm线性无关,反证法:若β1,…,βm线性相关,则r(α1,…,αm)<m,这与向

设矩阵B的列向量线性无关,BA=C,证明矩阵C的列向量线性无关的充要条件是A的列向量线性无关.

先证CX=0与AX=0同解.一方面,显然AX=0的解是CX=BAX=0的解.另一方面,设X1是CX=0的解,则CX1=0.所以(BA)X1=0所以B(AX1)=0因为B列满秩,所以有AX1=0.即X1

设向量组a1,a2,a3线性无关,则下列向量组线性相关的是

这是个常用结论:若C=AB,A列满秩,则R(C)=R(B)请参考:

设A为n阶可逆矩阵,则矩阵的每一列构成的向量组一定线性无关.这句话是否正确?

正确.可逆矩阵不但每一列构成的向量组线性无关,每一行构成的向量组也线性无关.再问:能不能解析下,谢谢啦再答:可逆矩阵的行列式不等于零,它的各阶子行列式都有不为零的,即秩数=阶数,可以得到:可逆矩阵不论

设矩阵A是m×n阶矩阵,则方程组AX=O仅有零解的充要条件是:A的列向量组线性无关,这是为什么?

齐次线性方程组AX=0仅有零解的充要条件是(1)r(A)=n(2)A的列向量线性无关.再问:Ϊʲô����������再问:�����У�再答:A���������鲻��������ص�再问:�£��

线代题!设AB为满足AB=0的任意非零矩阵,则有 a.A的列向量组线性相关,B的行向量组线性相关 b.A的列向量组线性相

想岔了A的列向量线性相关,怎么推出它的行向量组线性相关呢比如A=122011应该是r(A)再问:因为当时用手机问,没有追问,不好意思~这题题目一该是准确的提问是“必有”一下哪个选项,才对。否则根据列向

线性代数的题目设A为n×m矩阵,A的列向量组线性无关,证明存在列向量线性无关的矩阵B(下标n(n-m)

应该要让P可逆.设A为n×m矩阵,A的列向量组线性无关,证明存在列向量线性无关的矩阵B(下标n(n-m),使得P=(A,B)可逆,且B‘A=0.证明:考虑齐次线性方程组A'x=0,系数矩阵A'的秩是m

线性相关选择题2题:设向量组a1,a2,a3,a4线性无关,则有 A a1,a3,a4线性无关 B a1,a4线性无关&

C注:A可以线性相关,只要a1,a2线性无关就行Ba1a4线性相关跟这四个向量线性无关没关系D前后正负关系,肯定线性相关D注:秩为2所以A可以先向相关,跟a3线性相关都可以,只要跟a4别线性相关.B不

设A为n×s矩阵,A的列向量组线性无关,证明存在列向量线性无关的B,使得P=(A,B)可逆,且

R(A^T)=sA^Tx=0的基础解系含n-s个向量,令其构成矩阵B则B为列向量线性无关的n行n-s列矩阵且有A^TB=0,即有B^TA=0由于B的列与A^T的行正交(齐次线性方程组的解与系数矩阵的行

设向量组a1.a2.a3.线性无关,则下面向量组中线性无关的是

一.因为这样运算能使它们的和为0,因而可以判断线性无关.如果能找到其他一组系数使它们的和为0也可以说明问题.二.这要靠自己的经验的,没有一定的规则的.三.这个书上有的,一组向量无关,就不存在一组系数不

设向量组a,b,c线性无关,a,b,d线性相关则 a必可由b,c,d线性表示 这个是错的吗?

是错的结论应该是d可由其余线性表示再问:能说为什么吗?a不可以用b,d表示吗?再答:a.b.c无关则a.b无关由a.b.d相关知d可由a.b表示再问:a不可以用b,d表示吗?那a不是可以由b,d,c表

证明:若n阶矩阵A的列向量线性无关,则A^2的列向量也线性无关.

A^2=AA假设有A^2x=AAx=0,则有Ax=0,R(A)=n,所以x只有零解,所以有A^2*0=0,所以R(A^2)=n,故矩阵A^2的列向量线性无关

设n维列向量a1a2a3...am线性无关,则n维向量组b1b2.bm线性无关的充要条件

矩阵等价则矩阵的秩相同所以r(b1,...,bm)=r(B)=r(A)=r(a1,...,am)=m所以b1,...,bm线性无关

证明:若n阶矩阵A的列向量线性无关,则A^2的列向量也线性无关.

楼上看错了吧,是线性无关,不是线性相关.其实很容易,方阵A的列线性无关等价于det(A)非零,也等价于det(A^2)=det(A)^2非零.