设a>0级数∑a^n 1 a^2n收敛,则a
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 08:54:55
n≥1.当01,u=1/a^(lnn)=1/[e^(lnn)]^p=1/n^p,则级数收敛.
俺来回答一下,马上拍照再答:
An=(2n)!/a^(n!)A1=2/a易知An>0又A(n+1)/An=(2n+2)(2n+1)/a^(n+1)存在N使得当n>N(足够大时)A(n+1)/An=(2n+2)(2n+1)/a^(n
∵sn=(u(n)-u(n-1))+(u(n-1)-u(n-2))+.+(u(1)-u(0))=u(n)-u(0)∴s=limsn=a-u(0)再问:结果为u1-a再答:结果u1-a印错了
若∑(an平方)收敛,证明∑(an/n)必收敛证明,∑(an)^2收敛,∑(bn)^2=∑(1/n)^2收敛(p级数p>1时收敛)所以∑|anbn|≤∑(1/2)((an)^2+(bn)^2)收敛(因
设级数∑n(an-a(n-1))的前n项和为:σn设级数∑an的前n项和为:Sn则:σn=nan-S(n-1)-a0S(n-1)=nan-σn-a0limS(n-1)=lim(nan)-limσn-a
这道题不用分类讨论,无论a取何值都是收敛的,因为这个表达式只是数列通项,不是部分和数列的表达式,楼主可能这里犯错了.
马上写来再答:设级数∑An收敛于bn(An-A(n+1))=nAn-(n+1)A(n+1)-A(n+1)Sn=∑(k=1,n)[kAk-(k+1)A(k+1)-A(k+1)]=A1-(n+1)A(n+
a^n/(1+a^2n)=1/[(1/a^n)+a^n]当a=1时,通项极限=1/2所以发散当a>1时,a^n/(1+a^2n)=1/[(1/a^n)+a^n]
1.limn^(a+1)/(n^a(2n-1))=1/2因为:级数1/n^(a+1)收敛,原级数收敛2.1/(an+b)>1/(an)原级数发散再问:b>0,1/(an+b)<1/(an)吧,大的级数
该级数收敛1-cosa/n,因为a>0,n充分大之后,a/n趋向于0,cosa/n趋向于1,1-cosa/n单调递减且趋向于0,由莱布尼茨判别法可知,原级数收敛.
在a不等于1时级数收敛,分析如图.再答:
用反证法证明假设∑[a(n)+b(n)]收敛lim∑b(n)=lim(∑a(n)+∑b(n))-lim(∑a(n))显然lim∑b(n)存在,这样就得到矛盾.
a[n]+a[n+2]=∫{0,π/4}(tan(x))^ndx+∫{0,π/4}(tan(x))^(n+2)dx=∫{0,π/4}(tan(x))^n·(1+tan²(x))dx=∫{0,
|(-1)^n(1-cos2a/n)|与B/n^2是等价无穷小,绝对收敛再问:可以帮我解释详细一点吗?我没懂,这个n是趋近于无穷大的,不能用等价代换吧再答:1-cos2(a/n)=2sin²
例如an=(-1)^(n-1)/n∑a(2n-1)-a(2n)=∑1/n发散∑an+a(n+1)里两个项是同号的,由于∑an收敛,所以∑2an也收敛,并且任意添加括号后也收敛∑2an=2a1+2a2+
级数∑1/n^2与∑f(n)^2收敛所以∑[f(n)^2+1/n^2]/2收敛因为f(n)/n=根号(f(n)^2/n^2)
分情况一,正项级数则收敛,简单证明下设∑An=k则an必然有界an中m项和为∑bm