设a>0级数∑a^n 1 a^2n收敛,则a

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 08:54:55
设a>0级数∑a^n 1 a^2n收敛,则a
级数1/(a^(ln n))的敛散性(a>0)

n≥1.当01,u=1/a^(lnn)=1/[e^(lnn)]^p=1/n^p,则级数收敛.

级数(1/b)^n收敛,a>b>0,证明级数1/(a^n-b^n)收敛

俺来回答一下,马上拍照再答:

利用级数收敛的必要条件证明:lim(2n)!/a^(n!)=0 (a>1).

An=(2n)!/a^(n!)A1=2/a易知An>0又A(n+1)/An=(2n+2)(2n+1)/a^(n+1)存在N使得当n>N(足够大时)A(n+1)/An=(2n+2)(2n+1)/a^(n

设lim un=a,则级数(u(n)-u(n-1))为多少啊

∵sn=(u(n)-u(n-1))+(u(n-1)-u(n-2))+.+(u(1)-u(0))=u(n)-u(0)∴s=limsn=a-u(0)再问:结果为u1-a再答:结果u1-a印错了

设级数∑(an)^2收敛 则级数∑an/n是收敛还是发散

若∑(an平方)收敛,证明∑(an/n)必收敛证明,∑(an)^2收敛,∑(bn)^2=∑(1/n)^2收敛(p级数p>1时收敛)所以∑|anbn|≤∑(1/2)((an)^2+(bn)^2)收敛(因

设lim(n→∞)na_n 存在,且级数∑(n=1→∞) n(a_n-a_(n-1))收敛,证明:级数∑(n=1→∞)a

设级数∑n(an-a(n-1))的前n项和为:σn设级数∑an的前n项和为:Sn则:σn=nan-S(n-1)-a0S(n-1)=nan-σn-a0limS(n-1)=lim(nan)-limσn-a

级数a^(n*(n+1)/2)/[(1+a^0)(1+a^1)…(1+a^n)]

这道题不用分类讨论,无论a取何值都是收敛的,因为这个表达式只是数列通项,不是部分和数列的表达式,楼主可能这里犯错了.

设级数∑An收敛,且lim(nAn)=a,证明∑n(An-A(n+1))收敛

马上写来再答:设级数∑An收敛于bn(An-A(n+1))=nAn-(n+1)A(n+1)-A(n+1)Sn=∑(k=1,n)[kAk-(k+1)A(k+1)-A(k+1)]=A1-(n+1)A(n+

判断级数的敛散性a^n/(1+a^2n),a>0

a^n/(1+a^2n)=1/[(1/a^n)+a^n]当a=1时,通项极限=1/2所以发散当a>1时,a^n/(1+a^2n)=1/[(1/a^n)+a^n]

判断级数敛散性1.∞∑n=0 1/n^a(2n-1)

1.limn^(a+1)/(n^a(2n-1))=1/2因为:级数1/n^(a+1)收敛,原级数收敛2.1/(an+b)>1/(an)原级数发散再问:b>0,1/(an+b)<1/(an)吧,大的级数

设a为常数且a>0,则级数(-1)^n(1-cosa/n收敛性?及原因

该级数收敛1-cosa/n,因为a>0,n充分大之后,a/n趋向于0,cosa/n趋向于1,1-cosa/n单调递减且趋向于0,由莱布尼茨判别法可知,原级数收敛.

n从1到无穷大,a^n/1+a^2n其中a>0判定级数收敛性

在a不等于1时级数收敛,分析如图.再答:

证明:如果级数∑a(n)收敛,级数∑b(n)发散,则级数∑[a(n)+b(n)]发散.

用反证法证明假设∑[a(n)+b(n)]收敛lim∑b(n)=lim(∑a(n)+∑b(n))-lim(∑a(n))显然lim∑b(n)存在,这样就得到矛盾.

设an=∫(0-π/4)(tanx)^ndx.求级数∑(an+a(n+2))/n的和.证明当λ>0时,∑an/n^λ收敛

a[n]+a[n+2]=∫{0,π/4}(tan(x))^ndx+∫{0,π/4}(tan(x))^(n+2)dx=∫{0,π/4}(tan(x))^n·(1+tan²(x))dx=∫{0,

设A为常数且A>0,则级数(-1)^n(1-cos2a/n)是绝对收敛还是条件收敛,或者发散呢?

|(-1)^n(1-cos2a/n)|与B/n^2是等价无穷小,绝对收敛再问:可以帮我解释详细一点吗?我没懂,这个n是趋近于无穷大的,不能用等价代换吧再答:1-cos2(a/n)=2sin²

有关级数收敛若级数∑an收敛,为什么级数∑an + a(n+1)也收敛?而∑a(2n-1) - a(2n)不一定收敛?

例如an=(-1)^(n-1)/n∑a(2n-1)-a(2n)=∑1/n发散∑an+a(n+1)里两个项是同号的,由于∑an收敛,所以∑2an也收敛,并且任意添加括号后也收敛∑2an=2a1+2a2+

设级数∑f(n)^2收敛,证明∑[f(n)/n](f(n)>0)也收敛.

级数∑1/n^2与∑f(n)^2收敛所以∑[f(n)^2+1/n^2]/2收敛因为f(n)/n=根号(f(n)^2/n^2)

一个级数∑An收敛,请问它的偶数项级数∑A(2n)和奇数项级数∑A(2n+1)是否还收敛?

分情况一,正项级数则收敛,简单证明下设∑An=k则an必然有界an中m项和为∑bm