设An是公差不为0的等差数列,Sn为其前n项
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:40:50
由于为等比数列,只要连续3项就可确定数列的首项和公比!故只需要讨论4项删去某一项后剩3项即可!故只要讨论a1,a2,a3,a4即可!(1)删掉首项:a2,a3,a4a3^2=(a3-d)(a3+d)d
设{A(n)}的通项公式为:A(n)=2+d(n-1){B(n)}的通项公式为:B(n)=2×q^(n-1)则{A(n)}的前n项和为:S(n)=[A(1)+A(n)]n/2=[4+d(n-1)]n/
(1)令通项公式:an=a1+(n-1)da2=a1+da4=a1+3dS10=5(2a1+9d)=110由题意:a2^2=a1*a4即(a1+d)^2=a1*(a1+3d)由题意:a1=d=2所以通
先给出答案:a1/a2=1/3序号第n项前n项和Sn第1项:aa第2项:a+d2a+d第3项:a+2d3a+3d第4项:a+3d4a+6dS1:S2=S2:S4或者(S2)^2==S1*S4(2a+d
由AK是A1与A2k的等比中项,得得(AK)^2=A1*A2K因为A1=9d所以AK=8+KdA2K=8+2Kd所以(8+Kd)^2=9d*(8+2Kd)(K-4)*(k+2)=0因为K>0所以K=4
a1=9dak=a1+(k-1)*d=9d+(k-1)*da2k=a1+(2k-1)*d=9d+(2k-1)*dak^2=a1*a2k化简后可求出k=4
由题意可得:a3=2+2d,a6=2+5d由a1,a3,a6成等比数列所以(2+2d)^2=2(2+5d)又d不为0解得d=1/2由等差数列Sn=a1*n+n(n-1)d/2可得:Sn=2n+n(n-
a3=a1+d=2+2da6=a1+5d=2+5d等比数列,所以(2+2d)²=2*(2+5d)4+8d+4d²=4+10d4d²=2dd不等于0d=1/2an=2+1/
a1,a3,a6成等比数列a3²=a1a6(a1+2d)²=a1(a1+5d)a1²+4a1d+4d²=a1²+5a1da1d=4d²d≠0
设a3=a,公差为d则a2=a-d,a6=a+3d成等比数列,即(a2)*(a6)=(a3)*(a3)代入得出3d=2a.即d=2/3a所以公比为a3/a2=a/(a-d)=a/(1/3a)=3即公比
公差为da3=2+2da6=2+5d成等比数列,则a3^2=a1*a6(2+2d)^2=2(2+5d)4d^2+8d+4=4+10d4d^2-2d=02d(2d-1)=0d=1/2(因为d不为0)an
1.若n=4时,则原数列为a1,a2,a3,a4.⑴若删去a1,则a3∧2=a2×a4,→d=0,矛盾⑵若删去a2,→a5=0矛盾⑶若删去a3→a1=d→a1/d=1⑷若删去a4→d=0矛盾综上所述,
a1=9d则ak=9d+(k-1)d,a2k=9d+(2k-1)d因为ak为a1和ak的等比中项则有ak的平方等于a1乘以a2k即{9d+(k-1)d}^2=9d{9d+(2k-1)d}化简消去d得:
1.a1a2=a1+da4=a1+3da2^2=a1*a4(a1+d)^2=a1*(a1+3d)2a1*d+d^2=3a1*dd=a1S10=110=10a1+10*9*d/2a1=d=2{an}=2
S1/a1=1S2/a2-S1/a1=(2+d)/(1+d)-1=d/(1+d)S3/a3-S1/a1==(3+3d)/(1+2d)-1=(2+d)/(1+2d)2*d/(1+d)=(2+d)/(1+
设该等差数列是首项为a1,公差为dS3=3a1+3(3-1)*d/2=3a1+3dS2=2a1+2(2-1)*d/2=2a1+dS4=4a1+4(4-1)*d/2=4a1+6d又:S3²=9
(1)设数列{an}的公差为d,由题意,得S22=S1•S4所以(2a1+d)2=a1(4a1+6d)因为d≠0所以d=2a1,故a2a1=3;(2)因为a5=9,d=2a1,a5=a1+8a1=9a
因为ak是a1与a2k的等比中项,则ak2=a1a2k,[9d+(k-1)d]2=9d•[9d+(2k-1)d],又d≠0,则k2-2k-8=0,k=4或k=-2(舍去).故选B.
由S1,S2,S4成等比数列,∴(2a1+d)2=a1(4a1+6d).∵d≠0,∴d=2a1.∴a2a1=a1+da1=3a1a1=3.故选C