设A不等于0,B不等于0,为n阶方阵,满足AB=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:30:43
设A不等于0,B不等于0,为n阶方阵,满足AB=0
设A,B是数域P上两个n阶矩阵,A^n=B^n=0,但A^(n-1)不等于0,A^(n-1)不等于0.证明A与B相似.

如果可以用Jordan标准型,那么方法很直接.由A,B幂零,A,B都只有0特征值.特征值为0的r阶Jordan块是r次幂零的.A^(n-1)非零,说明A有大于n-1阶的Jordan块,于是A只有一个n

设n阶矩阵A,B满足AB=aA+bB.其中ab不等于0,证明AB=BA.

设n阶矩阵A,B满足AB=aA+bB.其中ab不等于0,证明AB=BA.证:以下记单位矩阵(幺阵)为E.由已知得(A-bE)(B-aE)=abE0两边求行列式,均不为零,故det(A-bE)0,故A-

设A,B都是n阶方阵,且|A|不等于0,证明AB与BA相似.

A可逆,A^(-1)ABA=BA,因此AB与BA相似

设A是n阶矩阵,若Ax=b对任何b都有解,A的行列式不等于0 求证!

由已知,对b取εi=(0,...,1,...,0)^T,i=1,2,...,n方程组Ax=εi有解所以ε1,...,εn可由A的列向量组线性表示所以n

设A为n阶方阵,且|A|不等于0,证明A^T A为正定矩阵

用正定定义与矩阵运算证明,如图.经济数学团队帮你解答.请及时评价.

证明:设矩阵A为n阶非零实对称矩阵,则存在n维列向量X使XTAX不等于0

你这个问题有一个证明方法就是证明A至少存在一个非零的特征值.假设A不存在一个非零的特征值,所有的特征值都是0,则A=0,矛盾,因此A至少存在一个非零的特征值,假设其对应的特征向量为X,那么XTAX就不

设A,B为两个n维列向量,(A^T)B不等于0,矩阵C=A(B^T),

AB^T的特征值为B^TA,0,0,...,0且由CA=AB^TA=(B^TA)A知A是C的属于特征值B^TA的特征向量.因为Q是正交矩阵所以B^Tqi=0所以Cqi=AB^Tqi=0所以q1,...

设A、B、C、D、均为n 阶矩阵,切|A|不等于0,AC=CA求证:

|A|不等于0,故A是可逆矩阵[A^(-1)On]*[AB]=[InA^(-1)B][-CA^(-1)In][CD][0nD-CA^(-1)B]两边同取行列式左边=|A^(-1)|*|AB|=|D-C

“a不等于1且b不等于1”是“a+b不等于0”的什么命题

“a不等于1且b不等于1”是“a+b不等于0”的无关命题再问:a+b不等于0不可以推出a不等于1且b不等于-1吗再答:可是你给的命题是“a不等于1且b不等于1再问:我现在已经明白了,谢谢你

设A,B为N阶矩阵,A不等于0,且AB=0,则( )A.BA=0 B.(A-B)^2=A^2+B^2 C.B=0 D.|

两个非零矩阵的积有可能是零矩阵,所以C不对,不满足交换律所以A不对.只有当A和B为可交换矩阵是B成立,所以B排除,答案是D

线性代数 设A,B为n阶方阵,B不等于0,且AB=0,

选B因为若|A|不等于0,则A可写成一系列初等矩阵的乘积,AB相当于对B作一系列初等变换,初等变换不改变矩阵的秩,所以AB同B有相同的秩,但是,由于AB=0,所以其秩为0,而B不等于0,所以其秩至少为

设A,B为n阶方阵,且AB=0,其中A不等于0,则B=0成立么?

A,B为n阶方阵,且AB=0,其中A不等于0,B=0不成立(A-B)^2=A^2+B^2也不成立(A-B)^2=A^2+B^2-AB-BA,-AB-BA这两项是不能随便丢弃的,并且很多时候AB不等于B

1.设N是可逆矩阵A的一个特征值,则 A.N是任意数 B.N>0 C.N不等于0 D.N<0

1.选C,因为只要有一个特征值为0,那个这个矩阵对应的行列式的值就为0,那么就不可逆了.2.选B,初等矩阵是指,由单位矩阵经过一次矩阵初等变换得到的矩阵.那么你同样可以把4个选项分别作初等变化看能不能

解方程(1)a/(x-a) b=1(b不等于1) (2)m/x-n/(x 1)=0(m不等于n,mn不等于0)

(1)a/(x-a)+b=1a/(x-a)=1-bx-a=a/(1-b)x=a+a/(1-b)=a{(1+1/(1-b)}=a(2-b)/(1-b)(2)m/x-n/(x+1)=0m/x=n/(x+1

设A,B分别为NxM,MxN(N>M)矩阵,K不等于0 证明:|KE-AB|=K^N-M|KE-BA|

[E0*[kEA=[kEA-BkE]BE]0kE-BA],取行列式得k^M*|D|=k^N|kE-BA|,D是中间的矩阵.另一方面【E-A*D=[kE-AB00E]BE],去行列式得|D|=|kE-A

问一个线性代数的问题设一个n阶矩阵A,x为一列向量组,x不等于0,Ax不等于0.那么是否能够推出矩阵A不等于0?为什么能

题目没有表达太清楚.x为一列向量组,x不等于0,Ax不等于0.这是说存在一个非零列向量x,使得Ax不等于0;还是对于任意一个非零列向量x,都有Ax不等于0.第二:是希望推出矩阵A不等于0,还是希望推出

设A,B均为n阶方阵,且B不等于零,若AB=0,则|A|=?

AB=0,则B的列向量都是Ax=0的解因为B≠0,所以Ax=0有非零解,所以|A|=0.同理.AB=AC即A(B-C)=0若能推出B=C则Ax=0只有零解,所以|A|≠0|A|≠0r(A)=nAx=0

设AB均为n阶方阵,若AB=0,且B不等于零,则必有A为不可逆矩阵,为什么啊

又是没悬赏的哈AB=0说明B的列向量都是齐次线性方程组Ax=0的解而B≠0说明Ax=0有非零解所以|A|=0,即A不可逆

线性代数问题1.设A.B均为n阶方阵,若|A+B|不等于0,且AB=BA,则(A-B)【(A+B)*】=【(A+B)*】

证:【单位阵全用E表示】1.用分析法:(A-B)[(A+B)*]=[(A+B)*](A-B)←【∵|A+B|!=0,∴A+B可逆】(A+B)(A-B)[(A+B)*](A+B)=(A+B)[(A+B)

设A ,B为n阶矩阵,如何证明若A*B=k*En(k不等于0),则B*A=k*En

AB=kE(k不等于0).①|A||B|=|AB|=|kE|≠0A,B可逆①->:B=kA^(-1)∴BA=kA^(-1)A=kE再问:A,B可逆,为什么?①->:B=kA^(-1)可以写明白点吗?再