设A与B为m×n矩阵,若A与B行等价,则存在m阶
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:05:56
终于看明白了,稍等啊再问:则B必为()然后四个选项ABCD选哪个?不好意思括号没打再答:矩阵A是正定矩阵,则它一定是可逆矩阵,与可逆矩阵相似的矩阵一定也是可逆矩阵。故选C.与实对称矩阵相似的矩阵未必是
设一分块矩阵C上块为A下块为BCx=0的解就是Ax=0与Bx=0的公共解r(C)
证明(AB)是可逆矩阵?没弄错么这样就不是方阵了何来可逆.再问:我下面写了第二行是BA啊再答:AB列变换A-BB行变换A-BBBAB-AA0A+B所以其行列式为|A-B||A+B|A+B与A-B均为可
经济数学团队帮你解答,有不清楚请追问.请及时评价.
证明:(必要性)设A与B等价,则B可以看成是A经过有限次初等变换得到的矩阵,而初等变换不改变矩阵的秩,所以R(A)=R(B).(充分性)设R(A)=R(B),则A、B的标准型都为ErOOO即A、B都与
(A+B)(A-B)=A^2-AB+BA-B^2注意矩阵乘法没有交换律.AB不一定等于BA,则BA-AB不一定等于0.所以(A+B)(A-B)=A^2-B^2不一定成立.
题目有点小错误,B的阶数是mxr,否则不能随便乘取m阶可逆阵P和n阶可逆阵Q使得A=PDQ,其中D=I_r000取B为P的前r列,C为Q的前r行即可.
证明:A为n阶非奇异矩阵,则A是若干初等矩阵的乘积,于是AB相当于对B进行了若干次行初等变换,初等变换不改变矩阵的秩所以r(AB)=r(B)
由于A的秩
应该是行列式|AB|=0因为A为m*n的矩阵所以r(A)
参考\x09 人是那样复杂的一种动物,想了解对方根本是不可能的一件事,没有了解,又不能相处,倒不如独身.——《美娇袅》
这是基本结论,可由定义证明.经济数学团队帮你解答.请及时评价.
因为A,B都是实对称矩阵,故他们都可以对角化.B他们有相同的特征值他们的特征多项式相同右边.
这个叫做矩阵的满秩分解,《矩阵论》上的定理.证明:A是m×n矩阵,R(A)=r,则A一定能通过初等行列变换变成如下矩阵100...00010...00001...00...000...00就是左上角是
只能选B小于m再问:����ϸ����һ����лл再答:û����ϸ���ͣ������Ŀ�Dz��걸�ģ�ֻ��ѡB������R(AB)n����Ϊ����m>nʱA�������صģ�B���
m>n时rank(AB)
(1)对于选项A.若λE-A=λE-B,则:A=B,但题目仅仅是A与B相似,并不能推出A=B,故A错误;(2)对于选项B.相似的矩阵具有相同的特征值,这个是相似矩阵的性质,这是由它们的特征多项式相同决
考虑方程ABx=0,由于A的列向量线性无关,所以只可能是Bx=0.这说明ABx=0的解空间与Bx=0的解空间相同,其中ABx=0解空间的维度为s-r(AB),Bx=0解空间的维度是s-r(B).两个方
因为A与(A,b)只少一列,所以r(A)=r(A,b)或r(A)=r(A,b)-1.r(A)=r(A,b)(A,b)的列组与A的列组等价b可由A的列向量组线性表示AX=b有解r(A)=r(A,b)-1