设a为3阶方阵 且detA=--2,若将A按列分块
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:47:47
IAIA逆=A*=2A逆所以A*+A逆=3A逆所以det[A*+A逆]=3^n/IAI=3^n/2
|-3A|=(-3)^3*|A|=(-3)^4=81
这要用到两个结论,第一,|AB|=|A||B|,第二,|A^T|=|A|,所以等式左边去行列式为|AA^T|=|A||A^T|=|A|^2
A^(-1)=A*/|A|=3A*A*=|A|A^(-1)=1/3A^(-1)|A*+(1/4A)^(-1)|=|A*+4A^(-1)||=|A*+12A*|=|13A*|=|13/3A^(-1)|=
A正交,则A的特征值的模是1又detA=-1=所有特征值的乘积,共轭复特征值成对出现所以必有特征值是-1再问:能写下证明过程吗?^ω^再答:再问:为什么A的转置等于A?再答:
行列式中不是有个公式:(A)(A*)=det(A)E那么两边取行列式的det(A)det(A*)=[det(A)]^n所以,detA*=[detA]^(n-1)=a^(n-1)不是是否明白了再问:明白
有个重要关系式:AA*=det(A)E,A*是A的伴随阵.取行列式得det(A)det(A*)=det(A)^ndet(E)=det(A)^n,由于det(A)不等于0,因此有det(A*)=(det
根据正交阵的定义,有AA^(T)=E,因此E+A=AA^(T)+A=A[A^(T)+E],因此det(E+A)=detA*det[A^(T)+E]=-det[A^(T)+E],注意到(E+A)^(T)
将A^2+2A-4E=0变化为A^2+2A-3E=E,即(A+3E)*(A-E)=E,因为(A-E)可逆,所以A+3E的逆方阵为(A-E)^-1
当|A|=-1时.|A+E|=|A+AA'|=|A(E+A')|=|A||E+A'|=|A||(E+A)'|=-|E+A|.所以|A+E|=0.所以-1是A的一个特征值
A^(-1)=A*/|A|两边同时左乘A得AA^(-1)=AA*/|A|E=AA*/|A|得AA*=|A|E=2E两边取行列式得:|A||A*|=2³|E|2|A*|=8|A*|=4故det
由A,B正交,AA'=A'A=E,BB=B'B=E|A'(A+B)|=|A'A+A'B|=|E+A'B||B'(A+B)|=|B'A+B'B|=|B'A+E|=|(B'A+E)'|=|A'B+E||A
detA=0再问:为啥啊??我就是不知道为什么?再答:如果detA≠0那么方程AX=b又唯一解而现在有2个解了,所以detA=0
det(A-B)=det(A1,2A2,3A3,A4-A5)=det(A1,2A2,3A3,A4)+det(A1,2A2,3A3,-A5)=2*3det(A1,A2,A3,A4)-2*3det(A1,
这个很简单,得a/b.把行列式按第一列展开,设aij的代数余子式是Aij,则有a11A11+a21A21+...+an1An1=a,当m≠i或n≠j时,有对amnAij求和是0,这个你知道吧,因此有b
det(A*)=1/27又(A)^-1=det(A)^-1A*原式=3
第一(-4)第二(1/3)A'是什么意思啊!最后一个(1/4)
A*=|A|A^(-1)=2A^(-1)由|A|=2知|A^(-1)|=1/2|3A*|=|6A^(-1)|=6³|A^(-1)|=6³×1/2=108A^(-1)表示A的逆矩阵
因为|kA|=k^3|A|,所以|3A²|=3^3*|A|²=9*(-2)²=9*4=36.