设a为3阶矩阵,则用P左乘A,相当于将矩阵A
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:27:11
存在可逆矩阵M使得M'AM=E此时M'BM仍然对称,从而存在正交矩阵Q使得Q'M'BMQ=DD为对角阵.令P=MQ即可
由于A可对角化,故A的最小多项式无重根(这是个定理)又由于a为A的n重特征根,故A有n个初等因子,都为λ-a故A的若当标准型为diag(a,a,...,a)故存在可逆矩阵P使得P^(-1)AP=dia
这个直接乘出来验证就行了,不过你既然问了大概是不知道这里的技术.先验证简单一点的,即A=I的情形,此时(I+P),(I-P),(I+P)^{-1},(I-P)^{-1}都是P的有理函数,其乘法两两可交
由已知,存在可逆矩阵Q满足Q^-1AQ=diag(a,a,...,a)=aE所以A=Q(aE)Q^-1=aQQ^-1=aE.
设a=(1,1),A={01;00},m=2即可验证~矩阵不存在乘法交换率,所以~错了~前面不是0啊(1,1){01;00}=(0,1)等式左边乘A可以,不过AaA^(m-1)不能变成aA^m,结合率
做特征值分解就好了.求A的特征值,即det(A-λI)=0,可得λ=5,2,-1所以,A-5I=-4-20-2-3-20-2-2所以,特征向量为c(1,-2,2),取长度为1的,得(1/3,-2/3,
题目应该是A乘A的转置为m阶正定矩阵.(AAT)T=AAT为对称阵任取m维向量x,考察xT(AAT)x=((ATx)T)ATx设xi为向量Ax的第i个元素,则((ATx)T)ATx=x1*x1+…+x
知识点:向量组a1,...,as线性无关的充要条件是向量组的秩等于s.R(A)=M,所以A的行向量组的秩为M.而A有M行,所以A的行向量组线性无关.R(A)=M,所以A的列向量组的秩为M.而A有N行,
这个命题不对!反例:A=0-101-20-10-1则A可逆但A的3重特征值只有一个线性无关的特征向量,A不能对角化!再问:这是考试一道原题--···而且题目我是原封不动打上来的··
A*=|A|A^-1=(1/2)A^-1所以|(2A)^-1-5A*|=|(1/2)A^-1-(5/2)A^-1|=|(-2)A^-1|=(-2)^3|A^-1|=-8|A|^-1=-16.补充:没错
知识点:n阶可逆矩阵等价于n阶单位矩阵E.因为A,B可逆,所以存在可逆矩阵P1,P2,Q1Q2满足P1AQ1=EP2BQ2=E所以P1AQ1=P2BQ2所以P2^-1P1AQ1Q2^-1=B令P=P2
参考\x09 人是那样复杂的一种动物,想了解对方根本是不可能的一件事,没有了解,又不能相处,倒不如独身.——《美娇袅》
再答:判断矩阵B是不是对称的,就验证B的转置和它本身是否相等。再问:给力
|AA*|=|A||A*|=||A|E||;//现在都是数了,不是矩阵了,所以可以用代数方法做了|A|=3是数,E是单位矩阵(也是上三角行列式),那么||A|E|=3*3*3*3=81;//上三角行列
|A-λE|=(8-λ)(2-λ)^2A的特征值为2,2,8(A-2E)x=0的正交的基础解系为a1=(1,-1,0)^T,a2=(1,1,-2)^T所以属于特征值2的全部特征值为k1a1+k2a2,
AA*=|A|E,∴A*=2A^-1由于A为3阶矩阵,∴|-2A*|=|-4A^-1|=(-4)^3×1/2=-32.再问:那请问这样|-2A*|=(-2)^3|A*|=(-2)∧3|2A^-1|=(
由于(3A)−1=13A−1,AA*=|A|E=12E,因此|(3A)-1-2A*|=|A||A||(3A)-1-2A*|=2|A(13A−1−2A*)|=2|13E−2•12E|=2|−23E|=2
知识点:1.A是对称矩阵的充分必要条件是A'=A(A'表示A的转置)2.(AB)'=B'A'3.(A')'=A因为(A'A)'=A'(A')'=A'A所以A'A是对称矩阵.因为(AA')'=(A')'
|-3A|=(-3)^3|A|=-27*2=-54