设A为5行3列的矩阵且r(A)=2,而B=,则r(AB)=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 06:18:04
R(A*)=1因为R(A)=3,所以A*不为0矩阵,所以R(A*)>=1AA*=|A|E=0所以R(A)+R(A*)
证明:首先有r(AB)≤min(r(A),r(B))≤r(A).再由B为行满秩,r(B)=n所以B可经过初等行变换化为(En,B1).所以存在可逆矩阵P使PB=(En,B1),且有r(AP^(-1))
因为A^2=0,所以|A^2|=0.由|A^n|=|A|^n得,|A|^2=0.故|A|=0
A的列向量可由(A,B)的列向量组线性表示所以r(A)
设一分块矩阵C上块为A下块为BCx=0的解就是Ax=0与Bx=0的公共解r(C)
k(1,1,1)^TA的各行元素之和均为0说明A(1,1,1)^T=0r(A)=2说明AX=0的基础解系含1个向量
特征值为5,用'表示转置a'b=5=>b'a=5是标量,所以特征值是5另外,怀疑你打错了.b’a不是矩阵,应该没这么简单.我估计求是ba’吧.ba’由于ba'b=5b=>其特征值仍然是5(因为若特征向
因为a^Tb=5所以a,b都是非零向量所以A=ba^T≠0.所以1
i,j两行交换,设E的i,j行交换得到E1,则E'A=B,从而(A^-1)(E1^-1)=B^-1E1^-1即将A^-1的i,j列交换.从而命题成立.不知道行列关系对不对,但就是这么算.
A2=A是什么?打错了吧,麻烦修改一下.如果是A^2=A即A^2-A=0写成特征值方程λ^2-λ=0所以A可能的特征值是,0和1因为A的秩是2,所以是1,1,0方法总结一下就是------------
知识点:r(AB)再问:谢谢老师,但是,r(βα^T)
知识点:向量组a1,...,as线性无关的充要条件是向量组的秩等于s.R(A)=M,所以A的行向量组的秩为M.而A有M行,所以A的行向量组线性无关.R(A)=M,所以A的列向量组的秩为M.而A有N行,
R(A^T)=sA^Tx=0的基础解系含n-s个向量,令其构成矩阵B则B为列向量线性无关的n行n-s列矩阵且有A^TB=0,即有B^TA=0由于B的列与A^T的行正交(齐次线性方程组的解与系数矩阵的行
我来分析一下:|AB|≠0,即AB可逆,(把AB做为整体)这样R(ABC)=R(C)或R(CAB)=R(C)其他的都不确定 见公式里的第四条
证明:设B=(b1,b2,...,bn)则AB=(Ab1,Ab2,...,Abn)=0所以Abi=0,i=1,2,...,n所以B的列向量是齐次线性方程组AX=0的解.(1)得证.(2)若r(A)=r
给定线性空间Rn,则A的行向量张成它的子空间,记为U,记U的维数为s.赋予标准内积,使Rn化为欧氏空间,题目等价于证明存在唯一的u∈U,使u与A的每一个行向量的内积都等于对应的b的元素.首先,由于标准
关于伴随矩阵的秩,有结论:若r(A)=n,则r(A*)=n若r(A)=n-1,则r(A*)=1若r(A)
D-----根据定义,矩阵的秩是最高阶非零子式的阶.A的秩是r,所以高于r阶的子式全为零,且r阶子式一定有非零的.
A^2=0即AA=0那么在这里由矩阵秩的不等式R(A)+R(B)-n≤R(AB)可以知道,2R(A)-3≤R(A^2)=0所以2R(A)≤3即R(A)≤1.5显然秩只能为非负整数,那么R(A)=0或1
1)由AB=0,得R(A)+R(B)《r.又R(B)=r,故R(A)《0.显然R(A)》0.故R(A)=0既A=02)如果AB=B,则AB-B=0.即(A-E)B=0,R(B)+R(A-E)《r.又R