设A为mxn实矩阵,证明秩(AtA)=秩(A)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 04:04:17
(BA)=0而由秩的不等式可以知道,r(BA)≥r(A)+r(B)-m现在r(BA)=0,而r(A)=m所以0≥m+r(B)-m即0≥r(B)而秩是非负数,所以r(B)=0,即矩阵B=0
经济数学团队帮你解答,有不清楚请追问.请及时评价.
由已知AB是mxm矩阵由于r(AB)
只要证明方程组A'Ax=0和Ax=0同解(记A'=At)若x是Ax=0的解,则显然x也是A'Ax=0的解若x是A'Ax=0的解则x'A'Ax=x'0=0(Ax)'(Ax)=0||Ax||=0Ax的范数
证明:设A的行向量组为a1,a2,...,am,...,as.则B的行向量组为a1,a2,...,am.A的行向量组的秩为r,即r(A)=r.即要证r(B)>=r(A)+m-s.设ai1,ai2,..
非齐次方程组无解的情况是系数矩阵的秩与增广矩阵的秩不一样而题中系数矩阵的秩m,方程组也只有m个,所以增广矩阵的秩不可能大于m,且增广矩阵的秩是大于系数矩阵的,所以增广矩阵的秩也为m,所以此非齐次方程组
一点不麻烦吧...对齐次方程组AX=0因为r(A)=
设A为mxn实矩阵,A^tA是正定矩阵,所以|A^tA|>0,从而(A^tA)的秩是n从而方程(A^tA)X=0只有零解.下面只要证方程(A^tA)X=0与方程AX=0有相同的解即可.1)设α设是方程
还带有提示.\x0d请看图片:\x0d\x0d\x0d满意请采纳^_^.
你分也太少了····我打了好长时间的····1,AB=O,因此B得列向量是方程Ax=0得解向量而该线性方程组得基础解系中相互无关的有n-r(A)个因此,r(B)IAI=0====>AA*=O====>
~你好!很高兴为你解答,~如果你认可我的回答,请及时点击【采纳为满意回答】按钮~~手机提问者在客户端右上角评价点“满意”即可.~~你的采纳是我前进的动力~~祝你学习进步!有不明白的可以追问!谢谢!~<
证:首先(A^TA)^T=A^T(A^T)^T=A^TA故A^TA是对称矩阵.又对任一非零列向量x由r(A)=n知AX=0只有零解所以Ax≠0再由A是实矩阵,所以(Ax)^T(Ax)>0即x^T(A^
D、矩阵A存在m-r个行向量线性无关这个说法是错误的这个说法与C中的说法矛盾其实也应该是r个先行无关的向量
矩阵A的秩不可能大于它两维尺度(m,n)中最小的那个所以r(A)再问:再问:这个例子的话。。。。再问:答案是小于m再答:本来就该小于m啊?难道我说的不是这个?再问:你说的是n………再答:n
[E0*[kEA=[kEA-BkE]BE]0kE-BA],取行列式得k^M*|D|=k^N|kE-BA|,D是中间的矩阵.另一方面【E-A*D=[kE-AB00E]BE],去行列式得|D|=|kE-A
证:对任一n维向量x≠0因为r(A)=n,所以Ax≠0--这是由于AX=0只有零解所以(Ax)'(Ax)>0.即有x'A'Ax>0所以A'A为正定矩阵.注:A'即A^T
(B)正确.此时A行满秩,A再添加一列b后秩仍然是m即有r(A)=r(A,b)故AX=b有解.再问:不好意思再问下,A和D选项错误的原因是?再答:(A)r(A)=n并不能保证r(A,B)=n方程组可能
知识点:设A为n阶方阵,则|A|=0r(A)
利用初等变换构造分解如图.经济数学团队帮你解答.请及时评价.谢谢!