设a为mxn矩阵,则非齐次线性方程组Ax=b尤唯一解的充分必要条件是()
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 17:25:49
(BA)=0而由秩的不等式可以知道,r(BA)≥r(A)+r(B)-m现在r(BA)=0,而r(A)=m所以0≥m+r(B)-m即0≥r(B)而秩是非负数,所以r(B)=0,即矩阵B=0
经济数学团队帮你解答,有不清楚请追问.请及时评价.
只要证明方程组A'Ax=0和Ax=0同解(记A'=At)若x是Ax=0的解,则显然x也是A'Ax=0的解若x是A'Ax=0的解则x'A'Ax=x'0=0(Ax)'(Ax)=0||Ax||=0Ax的范数
一点不麻烦吧...对齐次方程组AX=0因为r(A)=
设A为mxn实矩阵,A^tA是正定矩阵,所以|A^tA|>0,从而(A^tA)的秩是n从而方程(A^tA)X=0只有零解.下面只要证方程(A^tA)X=0与方程AX=0有相同的解即可.1)设α设是方程
还带有提示.\x0d请看图片:\x0d\x0d\x0d满意请采纳^_^.
你分也太少了····我打了好长时间的····1,AB=O,因此B得列向量是方程Ax=0得解向量而该线性方程组得基础解系中相互无关的有n-r(A)个因此,r(B)IAI=0====>AA*=O====>
~你好!很高兴为你解答,~如果你认可我的回答,请及时点击【采纳为满意回答】按钮~~手机提问者在客户端右上角评价点“满意”即可.~~你的采纳是我前进的动力~~祝你学习进步!有不明白的可以追问!谢谢!~<
证:首先(A^TA)^T=A^T(A^T)^T=A^TA故A^TA是对称矩阵.又对任一非零列向量x由r(A)=n知AX=0只有零解所以Ax≠0再由A是实矩阵,所以(Ax)^T(Ax)>0即x^T(A^
D、矩阵A存在m-r个行向量线性无关这个说法是错误的这个说法与C中的说法矛盾其实也应该是r个先行无关的向量
当m>n时,r(A)
记A的行向量为ai,i=1,2,……,m则A*A^T的所有顺序阶子式均有G(a1,a2,……,ak)的形式其中,1≤k≤m,G(a1,a2,……,ak)为a1,a2,……,ak在标准内积意义下的Gra
矩阵A的秩不可能大于它两维尺度(m,n)中最小的那个所以r(A)再问:再问:这个例子的话。。。。再问:答案是小于m再答:本来就该小于m啊?难道我说的不是这个?再问:你说的是n………再答:n
[E0*[kEA=[kEA-BkE]BE]0kE-BA],取行列式得k^M*|D|=k^N|kE-BA|,D是中间的矩阵.另一方面【E-A*D=[kE-AB00E]BE],去行列式得|D|=|kE-A
应该是Ax=0有非零解.有非零解,A的各行要线性相关,如果线性无关,那就只能是所有值乘以0相加才能得到0.A的各行线性相关,则m需要大于等于n,才能做到,否则,行肯定做不到线性相关.另外,A的秩r需要
(B)正确.此时A行满秩,A再添加一列b后秩仍然是m即有r(A)=r(A,b)故AX=b有解.再问:不好意思再问下,A和D选项错误的原因是?再答:(A)r(A)=n并不能保证r(A,B)=n方程组可能
知识点:设A为n阶方阵,则|A|=0r(A)
利用初等变换构造分解如图.经济数学团队帮你解答.请及时评价.谢谢!
如果知道Laplace展开定理,直接对前m行展开即可如果知道行列式乘积定理,可以做分解[AB;0C]=[IB;0,C]*[A0;0;I]对[IB;0,C]按第一列展开并归纳,对[A0;0;I]按最后一