设A为m×n实矩阵.证明:ATA为正定矩阵的充分必要条件

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 15:14:11
设A为m×n实矩阵.证明:ATA为正定矩阵的充分必要条件
设A为n阶非零实矩阵,A*=AT,其中A*为A的伴随矩阵.证明:A可逆

A为非零矩阵所以A的秩>0假设A不可逆则A的秩=r(A)+r(B)-n可知0=r(|A|E)=r(A*A)>=r(A*)+r(A)-n=r(A*)-1从而r(A*)0从而r(A*)=1于是r(AT)=

设A为m×n实矩阵,证明r(A^T A)=r(A)

方法:证明齐次线性方程组AX=0(1)与A^TAX=0(2)同解即可显然(1)的解是(2)的解设X0是(2)的解,则A^TAX0=0所以X0^TA^TAX0=0所以(AX0)^T(AX0)=0所以AX

高数线性代数设A为n阶可逆矩阵,B为任一n*m矩阵,如何证明

初等行变换相当于在矩阵的左边乘一系列初等矩阵初等矩阵的乘积是可逆矩阵P(A,B)=(E,X)PA=EPB=X得P=A^-1,X=A^-1B

设A为mxn矩阵,B为nxm矩阵,m>n,证明AB不是可逆矩阵?

经济数学团队帮你解答,有不清楚请追问.请及时评价.

设矩阵A是m*n型矩阵,At是A的转置矩阵,证明:A,At是对称矩阵

这要用到性质:1.(AB)'=B'A',其中A'表示A的转置.2.A是对称矩阵的充分必要条件是A'=A那么就有(AA')'=(A')'A'=AA'所以AA'的对称矩阵.

设A 为n阶非零实矩阵, A*=AT,证明A可逆.

证:由A*=A^T得AA^T=AA*=|A|E.又A为非零实矩阵,不妨设A的第一行不全为0,考虑A的第一行分别乘A^T的第一列之和,则有|A|=a11^2+a12^2+...+a1n^2≠0所以A可逆

设mxn实矩阵A的秩为n,证明:矩阵A^TA为正定矩阵.

证:首先(A^TA)^T=A^T(A^T)^T=A^TA故A^TA是对称矩阵.又对任一非零列向量x由r(A)=n知AX=0只有零解所以Ax≠0再由A是实矩阵,所以(Ax)^T(Ax)>0即x^T(A^

设m×n是矩阵A的秩为n,证明:矩阵A^TA为正定矩阵

首先,因为(A'A)'=A'(A')'=A'A,所以A'A是对称矩阵.又对任一非零向量X,由于r(A)=n,所以AX≠0.(否则AX=0有非零解)所以X'(A'A)X=(AX)'(AX)>0.所以A'

设A为m*n的矩阵,B为n*m的矩阵,m>n,证明AB=0

应该是行列式|AB|=0因为A为m*n的矩阵所以r(A)

线性代数:设A为m×p矩阵,B为s×n矩阵,证明:

参考\x09  人是那样复杂的一种动物,想了解对方根本是不可能的一件事,没有了解,又不能相处,倒不如独身.——《美娇袅》

设A为m阶正定矩阵,B是m*n实矩阵,且R(B)=n,证明B'AB也是正定矩阵

首先证明任取n维列向量x≠0,Bx≠0因为R(B)=n,所以存在B的n级子式不为0,不妨设B前n行构成的子式|B1|不为0,则若B1x=0必有x=0,矛盾.所以B1x≠0,所以Bx≠0.这样因为A正定

设A为m*n实矩阵,A^TA为正定矩阵,证明:线性方程组AX=0只有零解.

1、因为A*A'('表示转置)为n*n的矩阵,而一个矩阵的秩必≤它的行数或列数,所以r(A*A')≤n可以直接得到.2、需要说明的是,r(n)中的n是什么?你可能看错了,一个数是不必算秩的(一个非0数

设A正定矩阵,证明A^m为正定矩阵.

1、当m为偶数时,A^m=[A^(m/2)]'[A^(m/2)]为正定阵2、当m为奇数时,A^m=A^((m-1/)2)AA^((m-1)/2)=[A^((m-1/)2)]'AA^((m-1)/2)=

设m×n实矩阵A的秩为n,证明:矩阵AtA为正定矩阵.

证:对任一n维向量x≠0因为r(A)=n,所以Ax≠0--这是由于AX=0只有零解所以(Ax)'(Ax)>0.即有x'A'Ax>0所以A'A为正定矩阵.注:A'即A^T

设A为m×n实矩阵(m≠n).E是n×n单位矩阵,证明E+A∧TA是正定对称阵.

利用定义就可以了,对任意的非零向量xx^T(E+A^TA)x=x^Tx+(Ax)^T(Ax)>0

设A为m*n阶实矩阵,X为(0,A;AT,0)的非零特征值,证明X^2为ATA的特征值

经济数学团队帮你解答,有不清楚请追问.满意的话,请及时评价.谢谢!