设A为n阶矩阵,将A的第一列与第二列互换得到B,若|A|≠|B|,则必有

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 21:01:56
设A为n阶矩阵,将A的第一列与第二列互换得到B,若|A|≠|B|,则必有
若A为三阶方阵,将矩阵A第一列与第二列交换得矩阵B ,再把矩阵B的第二列加到第三列得矩阵C,则满足AQ=C的可逆矩阵Q为

若A为三阶方阵,将矩阵A第一列与第二列交换得矩阵B,再把矩阵B的第二列加到第三列得矩阵C,相对于将矩阵A依次右乘了两个初等矩阵于是Q就是这两个初等矩阵的乘积,即再问:E(3,(2))是怎么出来的……再

设A为n阶矩阵,证明A的转置与A的特征值相同.

A^T指A的转置,要求一个矩阵的特征值,先求特征多项式,即|λE-A|=0A的转置的特征多项式|λE-A^T|=0,因(λE-A)^T=(λE)^T-A^T=λE-A^T所以|λE-A|=|(λE-A

设方阵 A=E-2aaT,其中 E 为 n 阶单位矩阵,a 为 n 维单位列向量,证明:A为对称的正交矩阵.

直接验证.a是单位列向量,所以aTa=1AT=ET-2(aaT)T=E-2aaT所以是对称阵.ATA=(E-2aaT)(E-2aaT)=E-2aaT-2aaT+4aaTaaT=E这说明A是正交阵.

设A为n阶正定矩阵,矩阵B与A相似,则B必为 A,实对称矩阵 B正定矩阵 C可逆矩阵

终于看明白了,稍等啊再问:则B必为()然后四个选项ABCD选哪个?不好意思括号没打再答:矩阵A是正定矩阵,则它一定是可逆矩阵,与可逆矩阵相似的矩阵一定也是可逆矩阵。故选C.与实对称矩阵相似的矩阵未必是

设a是n维列向量,A为n阶正交矩阵,证明||Aa||=|a|

证:因为A为正交矩阵,所以A^TA=E(单位矩阵)从而||Aa||=√(Aa)^T(Aa)=√a^TA^TAa=√a^Ta=||a||再问:||a||?==√a^Ta这是为什么再答:不谢,那是公式。

设A为3阶矩阵,将A的第2列加到第1列得矩阵B,再交换B的第2行与第3行得单位矩阵

P1=[100]P2=[100],则A=?[110][001][001][010]A的第2列加到第1列得矩阵B,就是AP1=B,再交换B的第2行与第3行得单位矩阵就是P2B=E于是E=P2B=P2AP

将n行n列的矩阵a转置为a‘ c语言

voidtrans(double*m,intn){inti,j,t;for(i=0;i

证明,设A为n阶可逆矩阵,A*与A的伴随矩阵,证(A*)=n

因为A的伴随矩阵的行列式等于A的行列式的n-1次方所以A*的行列式不为零.则得到(A*)=n再问:我可以再问你几个吗再答:嗯

设A为n阶可逆矩阵,A*是A的伴随矩阵,证明|A*|=|A|n-1

1.A不可逆|A|=0AA*=|A|E=O假设|A*|≠0则A=O显然A*=O,与假设矛盾,所以|A*|=0即|A*|=|A|n-1=02.A可逆|A|≠0AA*=|A|EA*也可逆又|AA*|=||

设A为n阶正定矩阵,B是与A合同的n阶矩阵,证明B也是正定矩阵.

这是基本结论,可由定义证明.经济数学团队帮你解答.请及时评价.

设A为n阶矩阵,证明A的转置与A的特征值相同

(λE-A)′=λE-A′,|(λE-A)′|=|λE-A|∴|λE-A|=|λE-A′|,A与A′特征多项式相同,所以特征值也一样.

设A为n阶可逆矩阵,α1,α2,…αn为 n个线性无关的n维列向量.

设k1Aα1+k2Aα2+…+knAαn=0则A(k1α1+k2α2+…+knαn)=0因为A可逆,等式两边左乘A^-1,得k1α1+k2α2+…+knαn=0由已知α1,α2,…αn线性无关所以k1

设A为三阶矩阵,将A的第二行加到第一行得B,再将B的第一列的-1倍加到第二列得C ,记 P=(110,010,001)(

这是一个初等矩阵的问题,左乘一个初等矩阵相当于做一次相应的行变换,右乘一个初等矩阵相当于做一次相应的列变换所以B=(1,1,0;0,1,0;0,0,1)A,C=B(1,-1,0;0,1,0;0,0,1

设A为m×n矩阵,B为n×s矩阵,已知A的列向量组线性无关,证明:B与AB有相同的秩

考虑方程ABx=0,由于A的列向量线性无关,所以只可能是Bx=0.这说明ABx=0的解空间与Bx=0的解空间相同,其中ABx=0解空间的维度为s-r(AB),Bx=0解空间的维度是s-r(B).两个方

设n阶矩阵A的伴随矩阵为A* 证明:|A*|=|A|^(n-1)

大家都不帮你我来帮你因为AA*=|A|E,两边同时乘A逆,有A*=|A|A逆,两边同时取行列式,有|A*|=||A|A逆|=|A|^(N)|A逆|又因为|A逆|=|A|分之一(这个就不用给你推了吧.A