设A为n阶矩阵,将A的第一列与第二列互换得到B,若|A|≠|B|,则必有
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 21:01:56
若A为三阶方阵,将矩阵A第一列与第二列交换得矩阵B,再把矩阵B的第二列加到第三列得矩阵C,相对于将矩阵A依次右乘了两个初等矩阵于是Q就是这两个初等矩阵的乘积,即再问:E(3,(2))是怎么出来的……再
A^T指A的转置,要求一个矩阵的特征值,先求特征多项式,即|λE-A|=0A的转置的特征多项式|λE-A^T|=0,因(λE-A)^T=(λE)^T-A^T=λE-A^T所以|λE-A|=|(λE-A
直接验证.a是单位列向量,所以aTa=1AT=ET-2(aaT)T=E-2aaT所以是对称阵.ATA=(E-2aaT)(E-2aaT)=E-2aaT-2aaT+4aaTaaT=E这说明A是正交阵.
终于看明白了,稍等啊再问:则B必为()然后四个选项ABCD选哪个?不好意思括号没打再答:矩阵A是正定矩阵,则它一定是可逆矩阵,与可逆矩阵相似的矩阵一定也是可逆矩阵。故选C.与实对称矩阵相似的矩阵未必是
证:因为A为正交矩阵,所以A^TA=E(单位矩阵)从而||Aa||=√(Aa)^T(Aa)=√a^TA^TAa=√a^Ta=||a||再问:||a||?==√a^Ta这是为什么再答:不谢,那是公式。
P1=[100]P2=[100],则A=?[110][001][001][010]A的第2列加到第1列得矩阵B,就是AP1=B,再交换B的第2行与第3行得单位矩阵就是P2B=E于是E=P2B=P2AP
voidtrans(double*m,intn){inti,j,t;for(i=0;i
可将3阶单位矩阵做同样的列变换得Q为011100001
DC=121212121AB=211-111211
因为A的伴随矩阵的行列式等于A的行列式的n-1次方所以A*的行列式不为零.则得到(A*)=n再问:我可以再问你几个吗再答:嗯
1.A不可逆|A|=0AA*=|A|E=O假设|A*|≠0则A=O显然A*=O,与假设矛盾,所以|A*|=0即|A*|=|A|n-1=02.A可逆|A|≠0AA*=|A|EA*也可逆又|AA*|=||
这是基本结论,可由定义证明.经济数学团队帮你解答.请及时评价.
Q为{100011001}再问:错了,011100001再答:我觉得没错啊再问:你是怎么做的?
(λE-A)′=λE-A′,|(λE-A)′|=|λE-A|∴|λE-A|=|λE-A′|,A与A′特征多项式相同,所以特征值也一样.
设k1Aα1+k2Aα2+…+knAαn=0则A(k1α1+k2α2+…+knαn)=0因为A可逆,等式两边左乘A^-1,得k1α1+k2α2+…+knαn=0由已知α1,α2,…αn线性无关所以k1
这是一个初等矩阵的问题,左乘一个初等矩阵相当于做一次相应的行变换,右乘一个初等矩阵相当于做一次相应的列变换所以B=(1,1,0;0,1,0;0,0,1)A,C=B(1,-1,0;0,1,0;0,0,1
考虑方程ABx=0,由于A的列向量线性无关,所以只可能是Bx=0.这说明ABx=0的解空间与Bx=0的解空间相同,其中ABx=0解空间的维度为s-r(AB),Bx=0解空间的维度是s-r(B).两个方
可将3阶单位矩阵做同样的列变换得Q为011100001
大家都不帮你我来帮你因为AA*=|A|E,两边同时乘A逆,有A*=|A|A逆,两边同时取行列式,有|A*|=||A|A逆|=|A|^(N)|A逆|又因为|A逆|=|A|分之一(这个就不用给你推了吧.A