设A为n阶非零实矩阵.A^*=At,其中A^*为A的伴随矩阵,证明A可逆

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 20:59:50
设A为n阶非零实矩阵.A^*=At,其中A^*为A的伴随矩阵,证明A可逆
设A为n阶非零实矩阵,A*=AT,其中A*为A的伴随矩阵.证明:A可逆

A为非零矩阵所以A的秩>0假设A不可逆则A的秩=r(A)+r(B)-n可知0=r(|A|E)=r(A*A)>=r(A*)+r(A)-n=r(A*)-1从而r(A*)0从而r(A*)=1于是r(AT)=

设A为m×n实矩阵,证明r(A^T A)=r(A)

方法:证明齐次线性方程组AX=0(1)与A^TAX=0(2)同解即可显然(1)的解是(2)的解设X0是(2)的解,则A^TAX0=0所以X0^TA^TAX0=0所以(AX0)^T(AX0)=0所以AX

设A 为n阶非零实矩阵, A*=AT,证明A可逆.

证:由A*=A^T得AA^T=AA*=|A|E.又A为非零实矩阵,不妨设A的第一行不全为0,考虑A的第一行分别乘A^T的第一列之和,则有|A|=a11^2+a12^2+...+a1n^2≠0所以A可逆

设A,B均为n阶矩阵,r(A)

(D)正确.联立方程组Ax=0Bx=0则系数矩阵的秩r(A;B)

设A是n阶非零实矩阵,且A*=AT,证明:A是可逆矩阵

AA^*=|A|E说明AA^*的第一行第一列元素等于|A|E的第一行第一列的元素,而|A|E的第一行第一列的元素为|A|,而AA^*的第一行第一列的元为a11^2+a12^2+...+a1n^2,其他

设mxn实矩阵A的秩为n,证明:矩阵A^TA为正定矩阵.

证:首先(A^TA)^T=A^T(A^T)^T=A^TA故A^TA是对称矩阵.又对任一非零列向量x由r(A)=n知AX=0只有零解所以Ax≠0再由A是实矩阵,所以(Ax)^T(Ax)>0即x^T(A^

证明,设A为n阶可逆矩阵,A*与A的伴随矩阵,证(A*)=n

因为A的伴随矩阵的行列式等于A的行列式的n-1次方所以A*的行列式不为零.则得到(A*)=n再问:我可以再问你几个吗再答:嗯

设A为n阶可逆矩阵,A*是A的伴随矩阵,证明|A*|=|A|n-1

1.A不可逆|A|=0AA*=|A|E=O假设|A*|≠0则A=O显然A*=O,与假设矛盾,所以|A*|=0即|A*|=|A|n-1=02.A可逆|A|≠0AA*=|A|EA*也可逆又|AA*|=||

设n阶矩阵A的秩为1,证明A^2=tr(A)A

知识点:r(A)=1的充要条件是存在n维非零列向量α,β,使得A=αβ^T.所以有A^2=(αβ^T)(αβ^T)=α(β^Tα)β^T=(β^Tα)αβ^T=tr(A)A.

设A为m*n的矩阵,B为n*m的矩阵,m>n,证明AB=0

应该是行列式|AB|=0因为A为m*n的矩阵所以r(A)

设A为n阶可逆矩阵,E为n阶单位矩阵,刚A-1[A,E]= _______

按分块矩阵的乘法A^-1[A,E]=[A^-1A,A^-1E]=[E,A^-1].(*)教材中有这样的结论:n阶方阵A可逆的充分必要条件是A可以表示成有限个初等矩阵的乘积.当A可逆时,其逆矩阵A^-1

设A为n阶矩阵,若已知|A|=m,求|2|A|A^t|,

|A|=m,|2|A|A^t|=|2mA^t|,因A为n阶,则|2mA^t|=(2m)^n|A^t|,又|A^t|=|A|=m,|2mA^t|=(2m)^n|A^t|=(2m)^(n+1)/2再问:貌

设A为n阶矩阵,证明r(A^n)=r(A^(n+1))

如果知道Jordan标准型的话就显然了.如果不知道的话就证明A^{n+1}x=0和A^nx=0同如果A非奇异则显然成立,否则利用n-1>=rank(A)>=rank(A^2)>=...>=rank(A

设A为n阶矩阵,满足A2=A,设A为n阶矩阵,满足A2=A,试证:r(A)+r(A+I)=n

(结论应该是rank(A)+rank(A-I)=n,否则是错的.例:取A=I,则A^2=I=A,但rank(A)+rank(A+I)=rank(I)+rank(2I)=n+n=2n)证法一:令U={x

设m×n实矩阵A的秩为n,证明:矩阵AtA为正定矩阵.

证:对任一n维向量x≠0因为r(A)=n,所以Ax≠0--这是由于AX=0只有零解所以(Ax)'(Ax)>0.即有x'A'Ax>0所以A'A为正定矩阵.注:A'即A^T

设A*为n阶方阵A的伴随矩阵,则AA*=A*A=

这是一个基本公式,AA*=A*A=|A|E,其中E是单位阵.经济数学团队帮你解答,请及时采纳.

设n阶矩阵A的伴随矩阵为A* 证明:|A*|=|A|^(n-1)

大家都不帮你我来帮你因为AA*=|A|E,两边同时乘A逆,有A*=|A|A逆,两边同时取行列式,有|A*|=||A|A逆|=|A|^(N)|A逆|又因为|A逆|=|A|分之一(这个就不用给你推了吧.A