OA,OB是圆O的两条半径,且OA垂直于OB,点C是OB延长线上任意

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 02:16:06
OA,OB是圆O的两条半径,且OA垂直于OB,点C是OB延长线上任意
如图,OA,OB是圆O的两条半径,点D,C分别在OA,OB上,AC,BD交与点E且AD=BC

原图是这样子的吧?因为 AD = BC因为 OA = OB所以 OA - AD = OB&

1 如图1,OA,OB是圆O的两条半径,且OA垂直OB,点C是OB的延长线上的任意一点,过点C作CD切圆O于点D,连接A

1.连接OD∵AO垂直于OB∴∠AOB=90°∵D为圆O的切点,且OD为半径∴∠0DC=90°∵A0=0D∴∠0AE=∠ODE又∵∠A0B=∠0DC=90°∴∠0DC-∠0DE=∠A0B-∠0AE=∠

已知,OA、OB是圆O的半径,且OA⊥OB,点P为OA上任一点,BP延长交圆O于点.

(1)连接OQ∵QE为圆O的切线∴∠OQE=∠OQB+∠BQA+∠AQE=90°∵OQ=OB∴∠OQB=∠OBP∠BQA=∠AOB/2=45°故∠OBP+∠AQE=45°(2)∠OBP+∠AQE=45

【急】如图,OA、OB、OC是圆O的三条半径,M、N分别是Oa、OB的中点,且MC=NC,求证:弧AC=弧BC

∵OM=0.5*OA=0.5*OB=ON,CM=CN,OC=OC∴△OMC≌△ONC∴∠AOC=∠BOC∴弧AC=弧BC

如图所示是圆O的部分图形,OA、OB是圆O的两条互相垂直的半径,点M是弦AB的中点,过点M作MC平行于OA,交弧AB于点

延长CM交OB于点D,连接OC因为CD∥OA,M为中点,所以D为OB中点,且∠ODC=90°所以OD=OB/2=r/2,因为OC=r所以∠OCD=30°(rt△中,30°角所对的……)因为CD∥OA,

如图所示是圆O的部分图形,OA.OB是圆O的两条互相垂直的半径,点M是弦AB的中点,过点M做MC//OA,交弧AB于点C

过M、C作ME⊥AO于E,CF⊥AO于F,连OC∵M为AB的中点,∴ME=1/2 OB,易证MEFC为矩形∴CF= 1/2 OB= 1/2 OC,∠C

已知平行四边形ABCD的两条对角线AC,BD交于E.O是任意一点,求证:OA+OB+OC+OD=4OE.(OA,OB,O

OA-OE=EAOB-OE=EBOC-OE=ECOD-OE=EDOA-OE+OB-OE+OC-OE+OD-OE=EA+EB+EC+ED=0即OA+OB+OC+OD=4OE

如图,OA、OB是⊙O的两条半径,且OA⊥OB,点C是OB延长线上任意一点,过点C作CD切⊙O于点D,连接AD交OC于点

连接OD,∵CD切⊙O于点D,∴∠ODC=90°;又∵OA⊥OC,即∠AOc=90°,∴∠A+∠AEO=90°,∠ADO+∠ADC=90°;∵OA=OD,∴∠A=∠ADO,∴∠ADC=∠AEO;又∵∠

OA和OB是圆O的两条互相垂直的半径,M是弦AB的中点,过M作MC‖OA,交弧AB于C,求证弧AC=1/3弧AB

证明:延长CM,交OB于点N,连接OC∵M是BA中点,MC‖OB∴N是OB的中点∴ON=1/2OB=1/2OC∵OB⊥OA∴∠C=30°∴∠BOC=60°∴∠AOC=30°∴弧BC=1/3弧BA

如图所示是⊙O的部分图形,OA、OB是圆O的两条互相垂直的半径,点M是弦AB的中点,过点M作MC∥OA,交AB于点C.求

证明:连结OC,延长CM交OB于D,如图,∵点M是弦AB的中点,MC∥OA,∴点D为OB的中点,∴OD=12OB=12OC,在Rt△OCD中,∠DOC=30°,∴∠AOC=30°,∴∠AOC=13∠A

已知OA、OB是圆O的两条半径,C、D为OA、OB上的两点.且OC=OD,求证AD=BC

证明:因为OA,OB都是圆O的半径所以OB=OA又因为OC=OD,角COB=角DOA所以三角形COB全等于三角形DOA所以AD=BC

已知:如图,圆O的两条半径OA垂直OB,两条弦AC垂直BD于点E.求证:AD平行BC

角ACB是圆周角,角AOB是圆心角因为它们同弧所以角AOB=2角ACB因为圆O的两条半径OA垂直OB所以角ACB=45度因为角ADB和角ACB是同弧的圆周角所以角ADB=角ACB=45度(1)因为两条

OA,OB是圆O的俩条半径且OA⊥OB,点C是OB延长线上任意一点,过点C作CD切圆O于点D,连AD交OC于点E求证:C

(1)如图(1),OA、OB是⊙O的两条半径,且OA⊥OB,点C是OB延长线上任意一点,过点C作CD切⊙O于点D,连接AD交OC于点E.求证:CD=CE;(2)若将图(2)中的半径OB所在直线向上平行

如图,已知OA、OB是圆O的两条半径,C、D分别在OA、OB上且AD=BD求证AD=BD

证明:∵AC=BD,OAOB∴OC=OD∵∠A=∠A∴△OAD≌△OBC∴AD=BC

如图,OA,OC是圆O的两条半径,延长OA到点B,连结BC交圆O于点D,且DB=OA,求证:角C=2角B

连接AD∵AD‖OC在△BAD与△BOC中角B=角B角DAB=角COB角C=角B∴△BAD相似于△BOC∵∠COB=90°∴∠C=60°∴∠B=30°∴∠C=2∠B

已知OA和OB是圆O的两条半径,且OA⊥OB,弦AD交OB于P,过点D的切线交OB的延长线于C,若PD=DC,则∠A=

延长AO交⊙O于E,连结DO、DE.∵PD=DC,∴∠C=∠CPD,∴∠CDP=180°-2∠C.∵DC切⊙O于D,∴∠CDO=90°,∴∠CDP+∠ODA=90°,∴180°-2∠C+∠OCA=90

如图,OA、OB、OC是圆O的三条半径,M、N分别是Oa、OB的中点,且MC=NC,求证:弧AC=弧BC

∵OM=0.5*OA=0.5*OB=ON,CM=CN,OC=OC∴△OMC≌△ONC∴∠AOC=∠BOC∴弧AC=弧BC

如图,OA,OB是 圆O 的两条互相垂直的半径,C是弧AB上的一点.

过点C作CD⊥OB交OB于点E,交○O于点D,连接AD交OB于点P,交OC于点E.连接PC∵∠COB=30°∴∠C=60°∵∠D=∠AOC/2=60°/2=30°∴∠AEO=90°∴∠A=30°∴OE

图所示是圆O的部分图形,OA.OB是圆O的两条互相垂直的半径,点M是弦AB的中点,过点M做MC//OA,交弧AB于点C.

过M、C作ME⊥AO于E,CF⊥AO于F,连OC∵M为AB的中点,∴ME=1/2OB,易证MEFC为矩形∴CF=1/2OB=1/2OC,∠COF=30°,∴弧AC=1/3弧AB