设a为三阶方阵,a的三个特征值为345 则 a-e=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 21:02:13
λ^2+2λ+1
(1)利用矩阵A的行列式等于其所有特征值的乘积:|A|=λ1λ2λ3即知λ3=-1.(2)逆矩阵的特征值就是原矩阵特征值的逆,所以A的逆矩阵的特征值为1/2,-1/3,-1.(3)用A*表示A的伴随.
A*=A的行列式乘以A的逆=(-1乘以2乘以-3)乘以A的逆=6倍的A逆3阶方阵A的特征值为-12-3,A逆的特征值为-1,1/2,-1/3,所以A*的特征值为-6,3,-2
A^-1的特征值是A的特征值的倒数:1/3,1/2,1/4再问:这是真的吗==这么简单
应该是|A^-1-E|吧,由题,|A^-1-E|=|A^-1-A*A^-1|=|(E-A)*A^-1|=|E-A|*|A^-1|,因为1是A的特征值,所以有|E-A|=0,所以|E-A|*|A^-1|
A的m次方的特征值=A的特征值的m次方,故先求A的m次方的特征值.既然A的m次方=0,0矩阵的特征值当然是0,故A的m次方的特征值为0.故A的特征值=0.
λ是n阶方阵A的特征值,则:Ax=λx,其中x是λ对应的特征向量.考察(A+2E)x(A+2E)x=Ax+2Ex=λx+2x=(λ+2)x所以Α+2E的特征值为λ+2,同时可以看到,对应的特征向量不变
首先要注意a1,a2,a3线性无关,然后(b,Ab,A^2b)=(a1,a2,a3)*V,其中V=1x1x1^21x2x2^21x3x3^2是Vandermonde矩阵,由于x1,x2,x3互不相同,
-3要过程吗再问:非常感谢,我需要过程。再答:再答:大概过程就是这样,希望采纳再答:如果觉得写的还行,麻烦采纳一下,谢谢
题目没写全吧再问:则KA-1的特征值为,不好意思,谢谢您了再答:结果应该是2K-1过程设x是特征值2的特征向量Ax=2x则kAx=2kx则kAx-x=2kx-x即(kA-1)x=(2k-1)x所以,k
可以,这个结论是显然的.1.因为A不是满秩,因此A必然奇异,即必存在至少一个0特征值;2.已知A是3阶方阵,且两个非零特征值分别为-1和-2;所以A的第三个特征值一定为0.
A的特征值是1,2,3则A^2的特征值是1^22^23^2即1494A的特征值是4*14*24*3即4812A^2-4A的特征值是1-44-89-12即-3-4-3则|A^2-4A|=(-3)*(-4
若λ是A的特征值,且A可逆则1/λ是A^-1的特征值(定理)所以1-1/λ是E-A^-1的特征值再问:为什么1-1/λ是E-A^-1的特征值呢?再答:E-A^-1是A^-1的多项式有定理:f(λ)是f
(用c代替lambda)c是特征值,则存在非零向量x使得cx=Ax,于是A^2x=A(Ax)=cAx=c^2x,c^2是A^2特征值
因为r(A+3E)=2所以|A+3E|=0所以-3是A的特征值所以A的全部特征值为-1,-2,-3所以A+4E的特征值为(λ+4):3,2,1所以|A+4E|=3*2*1=6.
Ax=axA^mx=A^m-1Ax=aA^m-1x=...=a^mx
设a为矩阵A的特征值,X为对应的非零特征向量.则有AX=aX.aX=AX=A^2X=A(AX)=A(aX)=aAX=a(aX)=a^2X,(a^2-a)X=0,因X为非零向量,所以.0=a^2-a=a
最大特征值为:4-4=0
设A1=[a11a21a31]T;A2=[a12a22a32]T;A3=[a13a23a33]T;则A的行列式为:-a13a22a31+a12a23a31+a13a21a32-a11a23a32-a1