设A为反对称矩阵,如果矩阵A的所有r 1阶和r 2阶子式都为0,秩(A)≤r

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:31:56
设A为反对称矩阵,如果矩阵A的所有r 1阶和r 2阶子式都为0,秩(A)≤r
1,设A为5阶反对称矩阵,证明|A|=0.

根据性质5可以得的即奇数阶反对称矩阵则|A|=0证明|A|=|A'|=|-A|=-|A|,所以|A|=0再问:全过程就是这些吗?再答:人家数学论文就是这样写的或者参考之前别人的答案|A|=|A'|=|

设A是反对称矩阵,B是对称矩阵,证明A的平方是对称矩阵;AB-BA是对称矩阵

A=-A^t,B^t=BA^2=(-A)^t(-A)^t=(A^2)^t所以A^2为对称矩阵(AB-BA)^t=(AB)^t-(BA)^t=B^tA^t-A^tB^t=B(-A)+AB=AB-BA所以

设A为n阶对称矩阵,B为n阶反对称矩阵,证明:B的平方为对称矩阵,AB-BA也是对称矩阵

B^2=(-B^T)(-B^T)=(B^T)^2=(B^2)^T,说明B^2为对称矩阵(AB-BA)^T=(AB)^T-(BA)^T=(B^T)(A^T)-(A^T)(B^T)=(-BA)-(-AB)

有关于矩阵对称和反对称的证明题 :设A是反对称矩阵,B是对称矩阵.证明:

由已知,A'=-A,B'=B所以有1.(AA)'=A'A'=(-A)(-A)=AA=A^2故.2.(AB-BA)'=(AB)'-(BA)'=B'A'-A'B'=-BA+AB=AB-BA.故.3.AB是

设A是n阶对称矩阵,B是n阶反对称矩阵,则下列矩阵中反对称矩阵为:

选B由题目得:A'=A,B'=-B;因此选项A:(BAB)'=B'A'B'=BAB选项B:(ABA)'=A'B'A'=-ABA剩下的两个你自己分析一下吧,我得去吃饭了,别忘了(AB)'=B'A',顺序

设A是n阶实数矩阵,若对所有n维向量X,恒有X^TAX=0,证明:A为反对称矩阵

因为A+A^T是对称矩阵且X^T(A+A^T)X=X^TAX+X^TA^TX=X^TAX+(X^TAX)^T=0所以A+A^T=0所以A^T=-A故A是反对称矩阵.

证明反对称矩阵合同于形式为 的矩阵

应该说这个标准型看上去不是很舒服,最好先把它转化到M=diag{D,D,...,D,0,0,...,0}其中D=01-10这步合同变换很容易,按1,n,2,n-1,3,n-2,...的次序重排行列即可

线性代数问题:设A是n阶反对称矩阵,证明(E-A)(E+A)^(-1)是正交矩阵.

证明:记B=(E-A)(E+A)^-1注意到(E-A)(E+A)=E-A^2=(E+A)(E-A)和A^T=-A,有B^TB=((E+A)^-1)^T)(E-A)^T(E-A)(E+A)^-1=((E

设A为n阶对称矩阵,B为n阶反对称矩阵证明:1)AB-BA为对称矩阵 2)AB+BA为反对称矩阵

(1)因为(AB-BA)'=B'A'-A'B'=-BA+AB=AB-BA,故AB-BA对称(2)(AB+BA)'=B'A'+A'B'=-BA+A(-B)=-(AB+BA)故AB+BA反对称

设A是对称矩阵,B是反对称矩阵,证明A∧(-1)B∧2-B∧2A∧(-1)是反对称矩阵

A是对称矩阵,则A^{-1}对称,再利用定义可证(A∧(-1)B∧2-B∧2A∧(-1))^T=-(A∧(-1)B∧2-B∧2A∧(-1))

1,设A为5阶反对称矩阵,证明|A|=0.2,

|A|=|A'|=|-A|=(-1)^5×|A|=-|A|,所以|A|=0

证明:对任意的n级矩阵A,A+A^T伟对称矩阵,A-A^T为反对称矩阵

(A+A')'=A'+A=A+A',所以A+A'是对称的.(A-A')'=A'-A=-(A-A'),所以A-A'是反对称的.

已知A是实反对称矩阵,证明I-A^2为正定矩阵

这用到一个结论:实反对称矩阵的特征值是零或纯虚数所以I-A^2的特征值为1或1-(ki)^2=1+k^2>0所以I-A^2是正定矩阵

设A是n阶对称矩阵,B是n阶反对称矩阵,证:3A-B的平方是对称矩阵

由已知,A'=A,B'=-B.所以(3A-B)^2'=(3A-B)'(3A-B)'=(3A+B)(3A+B)呵呵结论不对!

设A是反对称矩阵,B是对称矩阵,证明:(1)A²是对称矩阵,(2)AB-BA是对称矩阵

(1)(A²)^T=(A^T)²=(-A)²=A²所以A²是对称矩阵;(2)(AB-BA)^T=(AB)^T-(BA)^T=B^TA^T-A^TB^T

设A为n阶方阵,怎样证明A+A的转置为对称矩阵?A-A的转置为反对称矩阵?

设B=A+A',则Bij=Aij+Aji=Bji,知B为对称矩阵另一个类似

证明:对任意的n阶矩阵A,A+A'为对称矩阵,A-A'为反对称矩阵.

...哥直接按定义证阿(A+A')'=A'+(A')'=A'+A=A+A'所以A+A'为对称矩阵(A-A')'=A'-(A')'=A'-A=-(A-A')所以A-A'为反对称矩阵

设A为3阶反对称矩阵,则│A│=?

A为3阶反对称矩阵则A的转置,即A^T=-A所以有|A^T|=|-A|又因为恒有|A^T|=|A|将两个式子连等可以得到|A|=|-A|行列式有以下性质:|kA|=k^n|A|,k为常数,n为矩阵A的

设A为n阶对称矩阵,B是n阶反对称矩阵,证明AB为反对称矩阵的充分必要条件是AB=BA

证明:若AB为反对称矩阵,则(AB)T=-AB=(-1)AB,已知A为n阶对称矩阵,则A=AT,B是n阶反对称矩阵,则BT=-B,而根据转置矩阵的重要性质(AB)T=BTAT=-BA=(-1)BA,(