设A为方阵,且已知|A|=-1,则|3A|的值为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 13:43:43
|-3A|=(-3)^3*|A|=(-3)^4=81
|-2A|=(-2)^3*|A|=-8*1/2=-4
因为|A*|=|A|^(4-1)=|A|^3=8所以|A|=2所以|2(A^2)^-1|=2^4/|A^2|=2^4/2^2=4
|kA|=k^n|A|所以|-3A|=(-3)^n|A|=2*(-3)^n
选D这个只要自己写一下就行了,既然r(A)=1,那原方阵A就相抵于3阶方阵{100;000;000},除了(1,1)位置元素为1,其余元素全是0——这是可以把A通过初等变换得到的.然后A中每一个元素a
有个重要关系式:AA*=det(A)E,A*是A的伴随阵.取行列式得det(A)det(A*)=det(A)^ndet(E)=det(A)^n,由于det(A)不等于0,因此有det(A*)=(det
AA*=|A|A*=|A|A^-1|2A^-1|-|A^*|=|2A^-1|-||A|A^-1|=|2A^-1|-|3A^-1|=2^4|A^-1|-3^4|A^-1|=-65|A^-1|=-65/3
知识点:1.(kA)*=k^(n-1)A*2.|kA|=k^n|A|3.|A*|=|A|^(n-1)|(2A)*|=|2^(n-1)A*|=2^[n(n-1)]|A*|=2^[n(n-1)]|A|^(
昨天在的怎么没收到你这个问题A*=|A|A^-1=5/2A^-1|(2A)^-1-A*|=|1/2A^-1-5/2A^-1|=|-2A^-1|=(-2)^3|A^-1|=-8*2/5=-16/5.
设B为A的伴随矩阵,E为单位阵,AB=|A|E,|A||B|=|A|^n,|B|=|A|^(n-1)
A=A^2A^2-A=0A^2-2A=-AA(A-2E)=-AA-2E=-E(A-2E)*(-E)=E所以:(A-2E)^-1=-E
5.B14.A,B,C
原式=(-2)³×detA=-8×(1/2)=-4
由A可逆,且AB=0等式两边左乘A^-1得A^-1AB=A^-10即B=0所以(A)正确
3A是在每个矩阵元素上乘以3,这样在计算行列式时,由于每个元素是原来的3倍,所以一个n阶方阵的行列式的值变为原来的3^n倍.在本题中,n=3,所以/3A/=3^3*(-2)=-18说的详细点,行列式是
因为|kA|=k^3|A|,所以|3A²|=3^3*|A|²=9*(-2)²=9*4=36.
用伴随阵与逆矩阵的关系可如图得到答案是2A.经济数学团队帮你解答,请及时采纳.
|-2A|=(-2)^3*|A|=(-2)^4=16
BA=A+BB=BA-AB=(B-I)A(I=identitymatrix)(B-I)^(-1)*B=(B-I)^(-1)*(B-I)*A(B-I)^(-1)*B=A(B-I)^(-1)*B*B=AB
|2A|=2^4|A|=16(-1)=-16