设a属于r,f(x)=e^x a*e
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 23:00:24
1+2^x+4^xa>0当x=-∞,上式等于1>0成立当x=1时1+2+4a>0=>a>-3/4
题目打错了吧,估计是f(x)=x(e^x+a*e^(-x)).f偶函数=>f(1)=f(-1)=>e+a/e=-1/e-ae=>a(e+1/e)+(e+1/e)=0所以a=-1
f(-x)=x^2+|-x-a|=x^2+|x+a|当a=0时,f(-x)=f(x)为偶函数当a不等于0时,f(x)是非奇非偶函数
目测楼主高一.1、定义域为x≠0,关于原点对称f(x)=x+a/x,则:f(-x)=-x+a/(-x)=-x-a/x所以,f(-x)=-f(x)所以,f(x)是奇函数.2、(1)a0,所以:0
f(x)=x(e^x+a^x)(x属于R)是偶函数所以f(2)=f(-2),即e^2+a^2=-(1/e^2+1/a^2)a^4+(e^2+1/e^2)a^2+1=0解之得:a^2=-e^2or-1/
(I)求导得f′(x)=2(x-a)lnx+=(x-a)(2lnx+1-),因为x=e是f(x)的极值点,所以f′(e)=0解得a=e或a=3e.经检验,符合题意,所以a=e,或a=3e(II)①当0
采用排除法(1)若a=e+1则f(x)=√(e^x+x-e-1)f(y0)=√(e^y0+y0-e-1)e^y0+y0-e-1>=0y0=1f(1)=0f(f(1))=f(0)=√(1-e-1)=√(
令f′(x)=0,解得x=2或x=a.①a≥2,则当x∈(2,2)时,f′(x)0,函数f(x)在(2,2)上单调递增,所以,当x=2时,函数f(x)取得最小值,最小值为f(2)=(4+a)e.综上,
设函数f(x)=x[e^x+ae^(-x)](x属于R)是偶函数,则实数a的值为_____f(x)=xe^x+axe^(-x);f(-x)=-xe^(-x)-axe^x;因为是偶函数,f(-x)=f(
f'(x)=e^x-a*e^(-x)f'(-x)=e^(-x)-a*e^xf'(x)是奇函数f'(x)+f'(-x)=0e^x-a*e^(-x)+e^(-x)-a*e^x=0a=1f(x)=e^x+e
f'(x)=e^x-ae^-x依题意f'(-x)=-f'(x)即e^-x-ae^x=ae^-x-e^x比较等式两边知a=1∴f'(x)=e^x-e^-x由f'(x0)=e^x0-e^-x0=3/2=2
f(-1)=f(1)f(1)=2(e-a/e),f(-1)=-2(1/e-ae)2(e-a/e)=-2(1/e-ae)即:e-a/e=-1/e+ae即:e²-a=-1+ae²即:(
f‘(x)=e^x-2=0e^x=2x=ln2x∈(-∞,ln2),f‘(x)0单调增区间f(x)极小值=2-2ln2+2ag(x)=e^x-(x^2-2ax+1)g'(x)=e^x-2x+2a当a>
(1)解析:∵函数f(x)=(x-1)e^x-kx^2令k=1==>f(x)=(x-1)e^x-x^2令f’(x)=xe^x-2x=0==>x1=0,x2=ln2f’’(x)=(1+x)e^x-2==
很简单(1)对于函数f(x)=ax-(a+1)ln(x+1)其一次导函数为f'(x)=(ax-1)/(x+1)二次导函数为f''(x)=(a+1)/(x+1)²易知当a>-1时,f'(x)单
选项C正确!解析:f(x)=(xa+b)(a-xb)=x*|a|²-x²a*b+a*b-x*|b|²=-x²a*b+(|a|²-|b|²)x
证明:f(x)=sinx-cosx+x+a求导:f'(x)=cosx+sinx+1=√2sin(x+π/4)+10
(1)若a=1,f(x)=ln(x+1)-e^(-x)-1,x>0,设x1小于x2,带入可知单调性这是定义法也可直接看函数单调性ln(x+1)是增函数e^(-x)是减函数所以-e^(-x)是增函数增函
1.f'(x)=e^x-2f'(x)≥0则x≥ln2单增x
f(-x)=f(x)-x[(e^-x)+(ae^x)]=x(e^x+ae^-x)多项式相等,对应项的系数相等,所以a=-1