设A是5阶矩阵,如果齐次线性方程组Ax=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 08:01:50
显然(1,1,.,1)^T是AX=0的非零解,把r(A)=n-1代入公式解向量个数=未知量个数-系数矩阵的秩=n-(n-1)=1所以方程只有一个解向量,所以通解就是X=k(1,1,.,1)^T,其中k
设k1b1+k2b2+k3b3=0(1)等式两边左乘A得k1Ab1+k2Ab2+k3Ab3=0由已知Ab1=a1b1,Ab2=a2b2,Ab3=a2b3所以k1a1b1+k2a2b2+k3a2b3=0
D是否有解无法判断A秩=4AB﹙即增广矩阵﹚秩可以是4﹙唯一一组解﹚或者5﹙无解﹚.再问:这个题答案选C再答:哦,是我没有看清楚题目,以为是另外一道题,http://zhidao.baidu.com/
你这是原题吗,感觉不完整A非零,说明r(A)>=1α4后面没涉及到
B=P^(-1)AP所以B^m=P^(-1)APP^(-1)APP^(-1)AP...P^(-1)AP(m个相乘)=P^(-1)A[PP^(-1)]A[PP^(-1)]A[P...P^(-1)]AP(
选a再问:Ϊʲô��再答:���ϵ������ʽ��ֵ���㡣��ֻ�������再问:лл��再答:���á���再问:û���װ�再问:�ڲ���再答:�ڡ���再答:���ҵ绰�������㽲�
这个应该是有条件的!如果矩阵A的秩
易知:A是m*n矩阵,且列向量组线性无关,所以r(A)=n,所以r(AB)=r(A)=n,因为n=r(AB)≤r(B)(或r(A))≤n(B是n阶矩阵)所以n≤r(B)≤n=>r(B)=n(2)此外,
AB=A-B(I+A)(I-B)=I于是(I+A)和(I-B)都可逆,(I-B)(I+A)=I展开得BA=A-B,即有结论.楼上的做法依赖于A可逆,碰到A=B=0这种就不行.
|A^(-1)|=1/|A|=1/2|3A*|=3^3|A*|=81|A|^(4-1)=81*8=648
A(a1,a2,a3)=(a1,a2,a3)KK=10201222-1所以|A||a1,a2,a3|=|a1,a2,a3||K|.由a1,a2,a3线性无关,所以|a1,a2,a3|≠0.所以|A|=
先证CX=0与AX=0同解.一方面,显然AX=0的解是CX=BAX=0的解.另一方面,设X1是CX=0的解,则CX1=0.所以(BA)X1=0所以B(AX1)=0因为B列满秩,所以有AX1=0.即X1
齐次线性方程组Ax=0的基础解系有2个解,说明r(A)=3,即A的所有4阶子式都是0.想想A*的定义,就知道A*是0矩阵,故r(A*)=0.
令x1,x2,为A有2个无关解,则S=n-r(A)r(A)=n-2〈n-1则r(A*)=0,即A*=0所以x1,x2也为A*X=0的解再问:能将的详细一点吗?不是很明白。r(A)=n-2〈n-1则r(
选D.若Ax=b有无穷多个解等价于R(A)=R(A,B)
α1,α2,α3,分别是A的特征值1,2,3对应的特征向量,故线性无关.再问:不好意思啊,特征向量还没教,能不能用其他方法证一下再答:k1α1+k2α2+k3α3=0记为1A(k1α1+k2α2+k3
1)3Ax=0,由4-2=2,知解空间的维数是2,记为x和yAx=b有解,设一个解为z,则解集合中线性无关的解向量为z,z+x,z+y2)1+2=3diag(1,1,-2),则A-E~diag(1,1
f(x)和g(x)互质表明f(x)和g(x)没有公共根,从而g(A)的特征值都不为0,再利用Cayley-Hamilton定理得到g(A)^{-1}一定是A的多项式.补充:λ是A的特征值当且仅当g(λ
把B写出分块矩阵的形式,B=(b1,b2,..bs),其中bi是B的第i个列向量,(i=1,2..s)AB=0A(b1,b2,..bs)=(Ab1,Ab2,..Abs)=0=(0,0,...0)Abi