设a是n阶方阵 且a的行列式%3d0则a

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 18:27:52
设a是n阶方阵 且a的行列式%3d0则a
设A是n阶方阵,且(A+E)的平方=O,证明A可逆

(A+E)的平方=OA²+2A+E=OA(A+2E)=-EA(-A-2E)=E所以有定义可知A可逆.

设A是n阶方阵,2,4,...,2n是A的n个特征值,计算行列式/A-3E/的值

因为2,4,...,2n是A的n个特征值,所以A-3E的特等值为2-3=-1,4-3=1,6-3=3,8-3=5...,2n-3所以|A-3E|=-1X1X3X5X...X(2n-3)=-1X3X5X

设A是n阶实对称方阵,秩(A)=r且A^2=A,计算n阶行列式︳2E-A︳

因为A^2=A所以A的特征值只能是0和1由于r(A)=r所以A的特征值为1,...,1(r个),0,...,0(n-r个)--这里用到A可对角化所以2E-A的特征值为1,...,1(r个),2,...

线性代数问题.设A为n阶实方阵,且AA^T = E,证明行列式 | A |= ±1.

证明:AA^T=E|A||A^T|=|E||A|^2=1|A|=±1.得证性质1:|A|=|A^T|性质2:若方阵AB=C有|A||B|=|C|

设n阶方阵A的行列式为a,且每一行元素之和为b(不等于0),则A的第n列元素的代数余子和是?

过程如下,把|A|中所有列均加到第n列,结果第n列元素变为b,然后从第n列中提取b,设提取后的行列式为|B|,则b|B|=a,即|B|=a/b,把|B|行第n列展开,就得到|A|的第n列元素的代数余子

设n阶方阵A的行列式为零,则线性方程组Ax=b

D正确.若AX=b有解,则有无穷多解但也可能无解所以D正确

设A,B都是n阶方阵,A的行列式的值为2,B的为-3,求2A*B^-1的行列式的值

|2A*B^-1|=2^n|A*||B^-1|=2^n*2^(n-1)*(-1/3)=-2^(2n-1)/3再问:不懂,求解释再答:这里用到几个性质:1.|kA|=k^n|A|2.|AB|=|A||B

设n阶方阵A的行列式|A|=2,求|A*|

|A*|=|A|^(n-1)=2^(n-1)第一个等号是知识点

设A是3阶方阵,且A的行列式=2,则(2A^*-A^-1)的行列式=

27/2.计算过程如图,经济数学团队帮你解答.请及时评价.再问:A^*=A的行列式乘以A^-1=2A^-1为什么

设A是n阶方阵,且行列式|A|=25,则行列式 |-4A|=

用性质计算.经济数学团队帮你解答.请及时评价.

设A是n阶方阵,且A的平方等于A,证明A+E可逆

假设A+E不可逆,则|A+E|=0所以-1是A的一个特征值设ξ是属于-1的一个特征向量则A^2ξ=A(-ξ)=-Aξ=ξ但A^2=A所以A^2ξ=Aξ=-ξ矛盾

设n阶方阵A的行列式|A|=0,且伴随矩阵A*≠0,则秩(A)=

n-1因为R(A)必定小于n而A*是各n-1阶子式组成的矩阵其不为0说明A比能取到至少1个不为0的n-1阶子式故R(A)=n-1

设A为n阶方阵,A的行列式为0是A的伴随矩阵的行列式为0的什么条件

充要条件A的行列式为0《=====》A的伴随矩阵的行列式为0可以参考伴随矩阵的秩的性质

设A为n阶方阵,且A的行列式=1/2,则(2A*)*是多少

用伴随阵与逆矩阵的关系可如图得到答案是2A.经济数学团队帮你解答,请及时采纳.

设n阶方阵A的行列式|A|=1,则|2A|=

|2A|=2^n再问:能讲一下过程吗再答:|2A|=2^n|A|=2^n