设A是n阶方阵,A*为其伴随阵:当R(A)=n-1时,R(A*)= .
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 18:38:48
IAIA逆=A*=2A逆所以A*+A逆=3A逆所以det[A*+A逆]=3^n/IAI=3^n/2
||A|A*|=|A|^n|A*|=|A|^n|A|^(n-1)=|A|^(2n-1)用到了几个结论:1.|kA|=k^n|A|2.|A*|=|A|^(n-1)
|A|=a≠0那么A可逆,A(-1)表示A的逆矩阵A(-1)=A*/|A|A*=|A|A(-1)AA*=|A|E(E为单位矩阵)|A||A*|=||A|E|=|A|^n|A*|=|A|^(n-1)=a
det(A)=o说明R(A)
对再答:行秩等于列秩等于矩阵的秩再答:行向量组的秩是它最大线性无关组中向量的个数
AA*=|A|E,则|A|×|A*|=|A|^n1.若R(A)=n,则|A|≠0,所以|A*|≠0,所以R(A*)=n2.R(A)<n-1,则A的所有n-1阶子式都等于0,所以A*=0,所以R(A*)
首先,当AB=0时r(A)+r(B)=1,故r(A*)=1.再问:若r(A*)=1,那不是r(A)
n阶矩阵A与其伴随矩阵A*的关系如下若r(A)=n则r(A*)=n若r(A)=n-1则r(A*)=1若r(A)
(1)证:如果r(A)
(1)证:如果r(A)
∵AA*=A*A=|A|E,∴A*=|A|A-1,从而:(kA)*=|kA|•(kA)-1=kn|A|•1kA−1=kn−1|A|A−1=kn−1A*,故选:B.
(1)要证这条,需要知道等式AA*=|A|E,其中|A|是A的行列式.如果R(A)=n,说明|A|不为零,则A*可逆,其逆为(1/|A|)A,所以R(A*)=n.(2)要证这条,需要知道A*的元素是A
设B为A的伴随矩阵,E为单位阵,AB=|A|E,|A||B|=|A|^n,|B|=|A|^(n-1)
A乘以A^*等于对角线全是|A|的对角矩阵.所以|A*A^*|=|A|*|A^*|=|A|^n.所以|A^*|=|A|^n-1
1)r(A)=n等价于det(A)≠0等价于det(A*)=1等价于A*可逆等价于r(A*)=n2)
A正交说明|A|=1或者-1A*=|A|A逆=±A'('表示转置所以A*乘(A*)'=±A'乘(±A')'=A'A=E所以A*亦正交
这是一个基本公式,AA*=A*A=|A|E,其中E是单位阵.经济数学团队帮你解答,请及时采纳.
充要条件A的行列式为0《=====》A的伴随矩阵的行列式为0可以参考伴随矩阵的秩的性质