设A是n阶方阵,且A--=A
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:28:03
由A^2=A知道A的特征值只能是1和0若|A+E|=0,则-1是其特征值,这不可能所以|A+E|≠0,即可逆
(A+E)的平方=OA²+2A+E=OA(A+2E)=-EA(-A-2E)=E所以有定义可知A可逆.
由(A+E)^2=0得A^2+2A+E=0A(-A-2E)=E所以A可逆且逆矩阵为-A-2E
Only_唯漪的证法我好像没有看懂的样子……果然代数都忘光了,这里给出一种Jordan标准型的证法参考一下:——————————————————————————————————————————∵R(E
因为A^2=A所以A的特征值只能是0和1由于r(A)=r所以A的特征值为1,...,1(r个),0,...,0(n-r个)--这里用到A可对角化所以2E-A的特征值为1,...,1(r个),2,...
=IkAI=k^n iAi =k^n*4
反证法若A是可逆矩阵,则A×A逆=EA=A×A×A逆=A×A逆=E矛盾
|(4A^T)^-1|=|(1/4)(A^T)^-1|=(1/4)^n(1/|A^T|)=1/4^n(1/|A|)=1/4^(n+1)
有个重要关系式:AA*=det(A)E,A*是A的伴随阵.取行列式得det(A)det(A*)=det(A)^ndet(E)=det(A)^n,由于det(A)不等于0,因此有det(A*)=(det
选项A,B,C是瞎扯,没这结论r(A+B)≤r(A)+r(B)正确,但与已知r(A)=r(B)没关系.怪怪的
(A+E)^2=0A²+2A+E=0A(A+2E)=-E两边取行列式,得|A|*|A+2E|≠0所以|A|≠0即A可逆.
用性质计算.经济数学团队帮你解答.请及时评价.
假设A+E不可逆,则|A+E|=0所以-1是A的一个特征值设ξ是属于-1的一个特征向量则A^2ξ=A(-ξ)=-Aξ=ξ但A^2=A所以A^2ξ=Aξ=-ξ矛盾
A=A^2A^2-A=0A^2-2A=-AA(A-2E)=-AA-2E=-E(A-2E)*(-E)=E所以:(A-2E)^-1=-E
5.B14.A,B,C
因为|5A+3E|=0,所以|A-(-3/5)E|=0,从而-3/5是A的一个特征值.
1,C,2,A,C,D
|2A|=2,方阵是行与列相同的矩阵.对于矩阵A,|A|就是矩阵的模,也是它对应的行列式的值.由行列式性质可以知道,将行列式中每个数同乘以k,值也乘以k.
因为A*A=A,所以A(A-E)=0;故A-E的每个列向量都是方程Ax=0的解,由于A-E中的列向量未必构成解空间的基,所以R(A)+R(A-E)小于等于n;又由R(A)+R(B)>=R(A+B);立
BA=A+BB=BA-AB=(B-I)A(I=identitymatrix)(B-I)^(-1)*B=(B-I)^(-1)*(B-I)*A(B-I)^(-1)*B=A(B-I)^(-1)*B*B=AB