设A是n阶方阵且A^k=o
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:14:39
由A^2=A知道A的特征值只能是1和0若|A+E|=0,则-1是其特征值,这不可能所以|A+E|≠0,即可逆
(A+E)的平方=OA²+2A+E=OA(A+2E)=-EA(-A-2E)=E所以有定义可知A可逆.
由(A+E)^2=0得A^2+2A+E=0A(-A-2E)=E所以A可逆且逆矩阵为-A-2E
=IkAI=k^n iAi =k^n*4
A^k=O.则A≠II-A^k=(I-A)*(I+A+A^2+A^3+...A^K-1)而A^k=O则(I-A)*(I+A+A^2+A^3+...A^K-1)=I则由可逆矩阵A*A^(-1)=A^(-
n阶方阵在复数域上有几个特征值呢?一定是n个,因为特征多项式|aE-A|是关于a的n次多项式,必有n个根.总之,计入复根,则A必有n个特征值.接下来如果特征值是a,那么由定义定有AX=aX于是a^kX
反证法若A是可逆矩阵,则A×A逆=EA=A×A×A逆=A×A逆=E矛盾
这是方阵行列式的基本性质kA是A中所有元素都乘以k取行列式|kA|:每一行都有一个k公因子,根据行列式的性质,每行提出一个k所以:|kA|=k^n|A|
I-A^k=(I-A)(I+A+...+A^(k-1)=I所以I-A可逆.其逆阵为(I+A+...+A^(k-1)
有个重要关系式:AA*=det(A)E,A*是A的伴随阵.取行列式得det(A)det(A*)=det(A)^ndet(E)=det(A)^n,由于det(A)不等于0,因此有det(A*)=(det
选项A,B,C是瞎扯,没这结论r(A+B)≤r(A)+r(B)正确,但与已知r(A)=r(B)没关系.怪怪的
(A+E)^2=0A²+2A+E=0A(A+2E)=-E两边取行列式,得|A|*|A+2E|≠0所以|A|≠0即A可逆.
用性质计算.经济数学团队帮你解答.请及时评价.
∵AA*=A*A=|A|E,∴A*=|A|A-1,从而:(kA)*=|kA|•(kA)-1=kn|A|•1kA−1=kn−1|A|A−1=kn−1A*,故选:B.
假设A+E不可逆,则|A+E|=0所以-1是A的一个特征值设ξ是属于-1的一个特征向量则A^2ξ=A(-ξ)=-Aξ=ξ但A^2=A所以A^2ξ=Aξ=-ξ矛盾
A=A^2A^2-A=0A^2-2A=-AA(A-2E)=-AA-2E=-E(A-2E)*(-E)=E所以:(A-2E)^-1=-E
因为|5A+3E|=0,所以|A-(-3/5)E|=0,从而-3/5是A的一个特征值.
题目应该是A(B-E)=O吧?不然照你这题目A|B-E|=O的话,就会变成A=O或|B一E|=O首先要搞清楚矩阵和行列式.A是一个矩阵,而|A|是一个行列式,行列式相当于一个数字而已,你可以把它看成k
1,C,2,A,C,D
|2A|=2,方阵是行与列相同的矩阵.对于矩阵A,|A|就是矩阵的模,也是它对应的行列式的值.由行列式性质可以知道,将行列式中每个数同乘以k,值也乘以k.