设A是一个n阶矩阵,P是一个n阶可逆矩阵,证明

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:00:49
设A是一个n阶矩阵,P是一个n阶可逆矩阵,证明
设n阶矩阵A的任意一行的元素之和都是a 证明a是矩阵A的一个特征值 求a对应的特征向量

考虑列向量x=(1,1,...,1)它和该矩阵的乘积是(a,a,...,a)它满足Ax=ax,因此a是特征值,x是特征向量

设A是n阶矩阵,n维非零列向量α 是A的属于特征值λ 的特征向量,P是n阶可逆矩阵 ,则矩阵P^-1AP属于特征值λ 的

因为Aα=λα,所以P^-1Aα=λP^-1α,故(P^-1AP)P^-1α=λP^-1α,可见P^-1α是矩阵P^-1AP属于特征值λ的特征向量.

设A是m*n矩阵,证明:r(A)=r的充分必要条件是存在m阶可逆矩阵P和n阶可逆矩阵Q,

提示:可逆矩阵可以看成若干初等矩阵的乘积.用等价矩阵秩相等去证.

设A十一n阶实可逆矩阵,证明:存在一个正定矩阵S和一个正交阵P,是A=PS

对A做奇异值分解A=USV^T,那么P=UV^T,S=VSV^T即为所求

设n阶可逆矩阵A的一个特征值是-3,则矩阵(1/3*A2)-1 必有一个特征值为_________.

有如下定理:若可逆阵A有特征值k(k一定不为0)则A逆有特征值1/k,A^2特征值k^2.(mA)有特征值mk.(以上结论容易证明)由此,本题:A的特征值-3,A^2的特征值9,1/3*A^2的特征值

设n阶矩阵A满足 AT A=I,detA=-1,证明-1是A的一个特征值.

证明:因为A^TA=E,所以AA^T=E所以|A+E|=|A+AA^T|=|A||E+A^T|=-|E+A|所以|A+E|=0所以-1是A的的一个特征值.

设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值λ

已知n维列向量α是A的属于特征值λ的特征向量,则:Aα=λα,(P-1AP)T=PTA(PT)-1,等式两边同时乘以PTα,即:(P-1AP)T(PTα)=PTA[(PT)-1PT]α=PTAα=λ(

设A是一个n阶矩阵,P是一个n阶可逆矩阵,证明:具体题目请看图片

证明:(P^-1AP)^2=(P^-1AP)(P^-1AP)=P^-1A(PP^-1)AP=P^-1A^2P再问:请问没有具体的解题步骤吗?再答:步骤已经给了呀

设n阶矩阵A满足 AT A=I,detA=-1,证明-1是A的一个特征值

证明由A^TA=E得A+E=A+ATA=(E+A^T)A所以|A+E|=|E+A^T||A|=|(E+A)^T|A=|E+A||A|=|E+A|*(-1)2|A+E|=0|A+E|=0所以-1是特征值

设C是一个n*1的矩阵,A是一个n*1的矩阵,B是一个n*n的矩阵,则如何求解以下函数f(A)的最小值,以及最小时的A?

使用矩阵求导就可以了.对A求一次倒数得到C+0.5(B+B')A,诺B对称且可逆,令其=0可解得A=-B^(-1)C.哎,你也太那个什么了.

设A为n阶可逆矩阵,λ是A的一个特征值,则A的伴随矩阵A*的特征值之一是(  )

∵A为n阶可逆矩阵,λ是A的特征值,∴A的行列式值不为0,且Ax=λx⇒A*(Ax)=A*(λx)⇒|A|x=λ(A*x)⇒A*x=.A.λX,故选:B.

设A,B是n阶方阵 P,Q是n阶可逆矩阵

给你例子看看A=[1,0;0,0],B=[0,0;0,1]则因为r(A)=r(B)=1,所以A与B等价.但它们的行向量组,列向量组都不等价A的行向量组是(1,0),(0,0)B的行向量组是(0,0),

设λ是n阶矩阵A的一个特征值,求证:若A可逆,则1/λ是n阶矩阵A-1;的一个特征值

λ是矩阵A的一个特征值,则存在非零向量X,AX=λX,故(1/λ)X=A^-1X,即A^-1X=(1/λ)X,1/λ是n阶矩阵A-1的一个特征值

设A是一个n阶上三角矩阵,并且主对角线上的元素不为0,如何证明它的逆矩阵也是上三角形矩阵?

证:用伴随矩阵的方法由A可逆,A^-1=A*/|A|记A=(aij),A*=(Aij)^T其中Aij=(-1)^Mij是aij的代数余子式,Mij是aij是余子式.当ii.2.某行乘非零常数在这两类变

1.设N是可逆矩阵A的一个特征值,则 A.N是任意数 B.N>0 C.N不等于0 D.N<0

1.选C,因为只要有一个特征值为0,那个这个矩阵对应的行列式的值就为0,那么就不可逆了.2.选B,初等矩阵是指,由单位矩阵经过一次矩阵初等变换得到的矩阵.那么你同样可以把4个选项分别作初等变化看能不能

设A是一个实对称矩阵,且 ,试证:必有实n维向量X,使XTAX

第一,实对称矩阵是可以正交相似对角化的.即A实对称则存在正交矩阵P,使得:P转置AP=对角阵(对角线上元素正好是n个特征值).这样的话就可以先不管A,我们先只看他的相似对角型,即只考虑对角阵,对角阵记

设A为m*n矩阵,求证存在一个n阶矩阵B≠0,使AB=0的充要条件是r(A)

证明:(=>)因为AB=0,所以B的列向量都是AX=0的解.又因为B≠0,所以AX=0有非零解.所以r(A)

设A为m×n阶矩阵,B是n×m矩阵,则r(AB)是

只能选B小于m再问:����ϸ����һ����лл再答:û����ϸ���ͣ������Ŀ�Dz��걸�ģ�ֻ��ѡB������R(AB)n����Ϊ����m>nʱA�������޹صģ�B���