设A有一个特征值2,求A-2A 2E

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:53:11
设A有一个特征值2,求A-2A 2E
设n阶矩阵A满足A^2=A,求A的特征值,并证明E+A可逆.

设j是的一特征值,则有X,使得AX=jX.而又有A^2×X=A(AX)=A(jX)=j(AX)=j^2×X因为A^2=A,故有:j^2×X=j×X即j^2=j求得j=0j=1由A^2=A有A^2-A-

设4阶方阵A满足条件:| 3 I +A | = 0,AAT= 2I,| A | < 0,求A*的一个特征值.

由|3I+A|=0得|A-(-3)I|=0,所以,A有一个特征值-3由A×AT=2I,两边取行列式得:|A|×|A|=2^4=16,又|A|<0,所以,|A|=-4因为A×A*=|A|I,设A对应于特

设A为n阶可逆矩阵,已知A有一个特征值为2,则(2A)的逆必有一个特征值为?

∵A的特征值为a∴Ax=ax两遍同乘以A^(-1)得:x=aA^(-1)x∴A^(-1)x=(1/a)x,∴A的逆矩阵的1/a又∵A的特征值为2,则2A的特征值为2*2=4,∴(2A)的逆矩阵的一个特

设方阵A有一个特征值λ=2,试证明:方阵B=A^2-A+2E有一个特征值为4.

有个定理,B的特征值为λ^2-λ+2=4再问:什么定理?可以写详细点吗?再答:首先把A做变换得到若当标准型A=RTCRR为正交阵,RT为其转置,C叫啥忘了,由若当块组成,A的特征值就在C对角线上。B=

线性代数 设方阵A有一个特征值为2,证明矩阵A^2-2A不可逆

矩阵A^2-2A是A的多项式,特征值为f(m)=m的平方-2m,即f(2)=0为矩阵A^2-2A的特征值,(A^2-2A)x=mx,因为m=0,所以(A^2-2A)x=0,齐次方程要有非零解,即|(A

设A为三阶方阵,已知A有两个特征值-1.-2,且(A+3E)的秩为2,求A+4E的行列式

因为r(A+3E)=2所以|A+3E|=0所以-3是A的特征值所以A的全部特征值为-1,-2,-3所以A+4E的特征值为(λ+4):3,2,1所以|A+4E|=3*2*1=6.

设λ=2是可逆矩阵A的一个特征值,则矩阵(A2)-1必有一个特征值等于?

如果(A2)-1意思是(A^2)^-1,则矩阵(A2)-1必有一个特征值等于1/4.设X是λ=2对应的特征向量,则AX=2X,A^2X=AAX=2AX=4X,即A^2X=4X,故得(1/4)X=(A^

线性代数(相似矩阵)设A∽B,B的特征值为1,-2,-3,①求A-¹的特征值;②求A伴随的特征值.

相似矩阵的特征值相同吧逆矩阵的特征值是原矩阵的倒数吧伴随是逆乘以|A|吧,|A|=1×-2×-3=6,特征值就是逆的6倍吧

线性代数 特征值小题 1.设λ0是可逆阵A的一个特征值,则A-2必有一个特征值是?2.设λ0是可逆阵A的一个特征值,则k

由于特征值公式是λa=Aa所以把A矩阵的地方用λ0代替就可以了.那个kI因为I是单位阵,所以折算成数值的时候去掉就行了.个人理解,可以这么做...

设2为矩阵A的一个特征值,则矩阵3A必有一个特征值?

2为A的一个特征值,根据定义,|2E-A|=03|2E-A|=0|6E-3A|=0根据定义,6是矩阵3A的一个特征值

设2是3阶方阵A的一个特征值,则A^2必有一个特征值是多少?

知识点:若a是A的特征值,g(x)是x的多项式,则g(a)是g(A)的特征值你的题目:g(x)=x^2,g(2)=2^2=4,g(A)=A^2所以4是A^2的特征值注意此类题型的扩展.

设λ是矩阵A的一个特征值,证λ^2是A^2的一个特征值

λ是矩阵A的一个特征值则λp=Ap两遍同时乘以λ则λ^2p=λAp=A(λp)=A(Ap)=A^2p则λ^2是A^2的一个特征值

.若矩阵A有特征值5.则2A的平方必有一个特征值是多少?

他的特征值是50这个题有个公式就是,A^2的特征值是5的平方.在乘以2就是50

设3阶矩阵A的特征值分别为 1 2 3,求|E+2A|

E+2A的特征值为3,5,7所以|E+2A|=105一般地,若A的特征值为λ,则f(A)的特征值为f(λ).其中f(λ)是多项式.再问:E+2A的特征值为3,5,7怎么算呢再答:一般地,若A的特征值为

设A为3阶矩阵,2是A的一个2重特征值,-1为它的另一个特征值,则|A|=?求计算过程,

结果为2*2*(-1)=-4因为有这个结论,一个矩阵的行列式等于它的各个特征值之积,我刚考完线代,复习了很久呢.