设A满足A的平方减3A加2E等于0,证明A可逆,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 08:01:07
Aa=ra,r为特征根.a=Ea=A^2a=A(Aa)=Ara=rAa=r(ra)=r^2a=>r^2=1,r=1or-1.
移项得A²+3A=2E或A²+3AE=2E由矩阵乘法的右分配律得(1/2)A(A+3E)=E∴(A+3E)可逆且A+3E的逆矩阵为(1/2)A
∵a³+a²-3a+2=3/a-1/a²-1/a³∴(a³+1/a³)+(a²+2+1/a²)-3(a+1/a)=0∴(
A^2-5A+7E=0;A^2-5A+6E=-E;(A-2E)(A-3E)=-E;(3E-A)(A-2E)=E;即3E-A可逆,逆矩阵为A-2E
移项:A^2=A+2E两边同乘以A^(-2)就得到:E=(A+2E)^A*(-2)
由题设得到A(A-E)=2E,那么A的逆就是1/2(A-E)而类似的(A+2E)(A-3E)=A²-A-6E=-4E,所以(A+2E)的逆为-1/4(A-3E)
由于(A+2E)(A-2E)=A^2-4E=-3E,所以(A+2E)(-A/3+2E/3)=E,因此A+2E可逆.
因为A^2-2A-E=0所以A(A-2E)=E所以A-2E可逆,且(A-2E)^-1=A.
A的平方-A-2E=O故A(A-E)=2E,A(A-E)/2=E,A可逆,且A逆=(A-E)/2所以A的平方|A的平方|[(A-E)/2]平方=E又A的平方=A+2E,所以(A+2E)[(A-E)/2
A²+3A-E=0A(A+3E)=E所以(A+3E)^(-1)=A
AATa=Aλa这不对再问:AAa=Aλa=λAa跟这个不一样么再答:A^T≠A再问:但是AT的特征值也是λ呀??再答:A与A^T的特征值尽管一样但它们的特征向量并不相同!
(A+E)(A平方-A-E)=-4E-4除过来根据定义来
(1)设a是A的特征值则a^2-a是A^2-A的特征值而A^2-A=0,零矩阵的特征值只能是0所以a^2-a=0所以a=1或0即A的特征值只能是1或0(2)由上知,A+E的特征值只能是2或1
由:A^2-3A-10E=0得:A^2-3A=10E得:(1/10)[A^2-3A]=E即:(1/10)A(A-3E)=E.按定义有:A^(-1)=(1/10)(A-3E).(若AB=E,则A^(-1
设λ是A的任意一个特征值,α是λ所对应的特征向量Aα=λαA²α=λAαEα=α=λ·λα=λ²αλ²=1λ=±1所以A的特征值只能是±1
因为A^2-2A-2E=0所以A(A-2E)=2E即(1/2)A(A-2E)=E所以A及A-2E均可逆且A^-1=(1/2)(A-2E)(A-2E)^-1=(1/2)A
因为A^3-A^2+2A-E=0所以A(A^2-A+2E)=E.所以A可逆,其逆为A^2-A+2E.再由A^3-A^2+2A-E=0得(A-E)(-A^2-2E)=E所以A-E可逆,且其逆为-A^2-
A^2-3A+2E=(A-E)(A-2E)=4E, 由逆矩阵的定义有:A-E=1/4(A-2E)
因为a+b=c所以a²+b²=c²-2aba²+c²=2ac+b²b²+c²=a²+2bc原式=(b²