设D为圆域:x^2 y^2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:24:49
所求面积=∫∫dxdy=2∫dθ∫rdr(应用极坐标变换)=∫[(2cosθ)²-(√(2(cos²θ-sin²θ)))²]dθ=∫[4cos²θ-2
积分区域是圆S=πf(x,y)=1/π,-√(2y-y²)再问:没问题了
T1<T2首先T1=∫∫(x+y)^2dxdyT2=∫∫(x+y)^3dxdy.这两个相除(x+y).你仔细想一下,如果(x+y)始终>=1,或者始终<=1,那么就好判断了.因此现在问题就看在D范围内
取L:x²+y²+4x-2y≤0===>(x+2)²+(y-1)²≤5∮L(x²-y)dx+(-y²+2x)dy=∫∫D[∂/&
随机变量X与Y相互独立,那么D(X-2Y+3)=DX+2²*DY而X~B(16,0.5),Y服从参数为9的泊松分布所以DX=16*0.5*(1-0.5)=4,而Y的方差就等于泊松分数的参数,
题目少字了吧?应该是y^2+y+X=0有实数根的概率为0.5吧?有实数根等价于1-4X≥0等价于X≤1/4所以X≤1/4的概率为0.5=Φ(0)所以(1/4-μ)/d=0μ=1/4
fX(x)=∫(0,+∞)8e^(-2x-4y)dy=-2e^(-2x-4y)|(0,+∞)=2e^(-2x)(x>0)E(X)=1/2,D(X)=1/4同理:fY(y)=4e^(-4y)(y>0)E
分成两部分2≤x^2+y^2再问:为什么要分成两部分呢再答:晕菜,因为要去绝对值符号再问:我的意思是为什么分成这种,难道面积和被积函数有关系??又比如D是-1
cov(X,Y)=E(XY)-E(X)E(Y),这是协方差公式,但是你问的问题好像有问题哦,请把等号前面的字加上再问:不好意思,,,,设X,Y为随机变量,D(X)=4,D(Y)=16,Cov(X,Y)
由方差的性质:D(Y)=D(2X+1)=4DX,而均匀分布的方差:DX=(3-1)^2/12=4/12=1/3故:D(Y)=4/3这个题是方差的性质与均匀分布的方差的应用,要熟练掌握.
f(x,y) = 1/4 (x,y) 在D上.f(x,y) = 0 在其它点.设Z = 
∫(r^2/r^2+1)dr=∫dr-∫1/(r^2+1)dr再问:∫1/(r^2+1)dr怎么求再答:arctanr
用二重积分的中值定理即可,定理是说∫∫f(x,y)dxdy=f(x0,y0)*S,(x0,y0)为D内某一点,S为积分区域D的面积.本题中∫∫e^(x^2+y^2)cos(x+y)dxdy=[e^(x
D(X+2Y)=D(x)+D(2y)+2cov(x,y)独立性知cov(x,y)=0指数分布(2)因此D(x)=1/4,均匀分布(0,4)因此D(y)=4x4/12因此D(x)+D(2y)=D(x)+
首先看被积函数的几何意义注意到x²+y²+z²=R²是球体,所以z=√(R²-x²-y²)就是上半个球体半径为R,在xoy面的投影
极坐标∫∫√(a²+x²+y²)dxdy=∫∫r√(a²+r²)drdθ=∫[0→2π]dθ∫[0→a]r√(a²+r²)dr=2
x+2y+z=e^(x-y-z)两边对x求偏导注意到z=z(x,y)1+z'=e^(x-y-z)*(1-z')...(1)再对x求偏导z"=e^(x-y-z)(1-z')^2-z"e^(x-y-z).
当被积函数为1时,二重积分的几何意义就是D的面积∴∫∫Ddσ=椭圆D的面积=πa
选择A再问:额。有步骤嘛。。