设D是由曲线y=lnx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:02:55
设D是由曲线y=lnx
设y=f(x)是由方程xy+lnx+y=1所确定的函数,求dy.

方程两边同时求x对y的导:y+xdy/dx+1/x+2ydy/dx=0,dy/dx=-(y+1/x)/(x+2y),dy=-(y+1/x)dx/(x+2y)

过坐标原点作曲线y=lnx的切线,该切线与曲线y=lnx及x轴围成平面图形D.

建立直角坐标系,作出y=lnx曲线及其过原点的切线.(1)设切点的横坐标为x0,则曲线y=lnx在点(x0,lnx0)处的切线方程是y=lnx0+1x0(x−x0).①由该切线过原点知 ln

求教一道高数题,设D是由曲线y=√x,x+y=2和x轴所围成的平面区域,求D绕y轴旋转一周而成的旋转体的体积V

先画图,求曲线交点是(1,1),旋转完后,你想象一下做许多垂直于y轴的平行平面去截旋转体,得到的每个平面面积都是可求的,其实就是求平行截面为已知图形的物体体积.作x轴平行线y=y0交原平面图行于两点,

设函数y=f(x)由方程xy+2lnx=y4所确定,则曲线y=f(x)在点(1,1)处的切线方程是______.

等式xy+2lnx=y4两边直接对x求导,得y+xy′+2x=4y3y′将x=1,y=1代入上式,有 y'(1)=1 故过点(1,1)处的切线方程为y-1=1•(x-1),即x-y

由曲线y=lnx与两直线y=e+1-x及y=0所围成的平面图形的面积是 ___ .

设所围图形的面积为A,∵曲线y=lnx和直线y=e+1-x的交点为:(e,1)又曲线y=lnx,解得:x=ey直线y=e+1-x,解得:x=e+1-y以y为积分变量∴A=∫10[(e+1-y)-ey]

设曲线C:y=-lnx(0

详细答案在下面,希望对你有所帮助1

设直线y=2x+b是曲线y=lnx的一条切线,则b=?

曲线y=lnx导数方程为y'=1/x,因直线y=2x+b是曲线y=lnx的一条切线,则y'=1/x=2;设切点为(x1,lnx1),则y'=1/x1=2,x1=1/2.将(x1,lnx1)代入y=2x

设D是由曲线y=lnx, x=e和x轴所围成的平面图形, (1)求D的面积A, (2)求D绕x轴旋转所形成的旋转体的体积

1.S=∫(1,e)lnxdx=[xlnx-x](1到e)=(e*lne-e)-(1*ln1-1)=12.V=∫(1,e)π(lnx)²dx=[x(lnx)^2-2xlnx+2x](1到e)

设随机变量(X,Y)在平面区域D上服从均匀分布,其中D是由直线y=x和曲线y=x^2所围成的区域,求(X,Y)的边缘概

设(X,Y)的联合密度函数f(x,y)=a(x,y)∈D首先有概率完备性知1=∫∫f(x,y)dxdy=∫∫adxdy=a∫(0,1)dx∫(x^2,x)dy=a/6所以a=6.(X,Y)的联合密度函

设l为曲线c:y=lnx/x,在(1,0)处的切线

y=lnx/xy'=(1-lnx)/x²y'(1)=(1-ln1)/1²=1l方程为y=x-1(2)就是要证明对所有x≠1,有x-1-lnx/x>0设g(x)=x(x-1)-lnx

设y=x+lnx,(x>0),则d²y/dx²= 过程

dy/dx=1+1/xd²y/dx²=-1/x^2

设函数y=x/lnx,则y''=为什么是(2-lnx)/xln^3x?

【(lnx-1)/(lnx²)】'=[1/lnx-1/(lnx)²]'=[(lnx)^(-1)-(lnx)^(-2)]'=(-1/x)(lnx)^(-2)+(1/x)2(lnx)^

设D是由曲线y=lnx与其过原点的切线及x轴围成的区域,D绕x轴旋转一周所成旋转体的体积是?

是公式但是至于怎么推到出来的你把曲线化为空间曲线再三重积分就行至于积分怎么积没有普遍方法你这题用换元也可以不过我一般会用分步积分至于过程简单写下分步法:∫(lnx)^2dx=(lnx)^2*x-∫2l

设y=y(x)是由sin(xy)=lnx+ey

在方程中令x=0可得,0=lney(0)+1,从而可得,y(0)=e2将方程两边对x求导数,得:cos(xy)(y+xy′)=1x+e−y′y将x=0,y(0)=e2代入,有e2=1e−y′(0)e2

设曲线Y=ax^2与Y=lnx相切求a(要有解题步骤)

Y=ax^2,y'=2ax;Y=lnx,x'=1/x切点设为(x,y),则ax^2=lnx,2ax=1/x显然x>0,2ax=1/x>0两式相除得x/2=x*lnxx=e^(1/2)x>1时f'(x)

设曲线y=ax平方与y=lnx相切,求a?

假设切点是A(m,n)则他在两个函数上n=am²n=lnm所以am²=lnm且此处两个切线是同一条,所以斜率相等即导数相等y=ax²,y'=2axy=lnx,y'=1/x

设曲线y=ax^2与Y=lnx相切,求a.

a=1/2e先求导,y=2ax,y=1/x2ax=1/xx=...该处的函数值相等,列出等式,得到a的值

设平面区域D是由y=lnx,x轴,直线x=e所围.求D的面积及绕X轴旋转的体积V

所求面积=∫lnxdx=(xlnx)│-∫dx(应用分部积分法)=(e-0)-(x)│=e-(e-1)=1;所求体积=∫πln²xdx=π[(xln²x)│-∫2lnxdx](应用

设平面区域D由曲线y=1x

区域D的面积为:SD=∫e20dx∫1x0dy=∫e211xdx=lnx|e21=2,所以(X,Y)的联合概率密度为:f(x,y)=12  (x,y)∈D0