设E(X)=-2,D(Y)=1,E(Y)=2,D(Y)=4,且X与Y独立,试估计

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 02:00:14
设E(X)=-2,D(Y)=1,E(Y)=2,D(Y)=4,且X与Y独立,试估计
设y=y(x)是由方程xy+e^y=y+1所确定的隐函数,求d^2y/dx^2 x=0

xy+e^y=y+1(1)求d^2y/dx^2在x=0处的值:(1)两边分别对x求导:y+xy'+e^yy'=y'y/y'+x+e^y=1(2)(2)两边对x再求导一次:(y'y'-yy'')/y'^

设随机变量X与Y相互独立,且E(X)=E(Y)=1,D(X)=2,D(Y)=3,试求(1)D(X-Y) (2)D(XY)

X,Y是两个相互独立的随机变量,则D(X-Y)=D(X)+(-1)^2*D(Y)=5D(X)=E(X^2)-[E(X)]^2E(X^2)=2+1=3同理E(Y^2)=3+1=4而cov(X,Y)=0,

设随机变量X,Y相互独立,且E(X)=E(Y)=0,D(X)=D(Y)=1,试求E[(X+Y)^2].

E[(X+Y)^2]=D(X+y)+[E(x+y)]^2,D(X+y)=D(x)+D(y)=2.E(x+y)=E(x)+E(y)=0;所以E[(X+Y)^2]=2不对么?

求教一道概率证明题设x y是相互独立的随机变量,证明(1)若E(X)=E(Y)=0,则D(XY)=D(X)D(Y),(2

∵X,Y相互独立,∴X^2,Y^2也相互独立(1)D(XY)=E[XY-E(XY)]^2=E(XY-EXEY)^2=E(X^2Y^2)=E(X^2)E(Y^2)=E[(X-EX)^2]E[(Y-EY)

设随机变量X,Y相互独立,且E(X)=E(Y)=1,D(X)=D(Y)=1,试求E[(X+Y)^2].

E[(X+Y)^2]=E[(X-1+Y-1+2)^2]=E(X-1)^2+E(Y-1)^2+4+2*E(X-1)(Y-1)+2*2*E(X-1)+2*2*E(Y-1)=D(X)+D(Y)+4+0+0+

设E(X)=1,E(Y)=2,D(X)=1,D(Y)=4,ρ(XY)=0.6,设Z=(2X-Y+1)^2,则其数学期望E

Z=(2X-Y+1)²=4X²-4XY+Y²+4X-2Y+1EX²=DX+(EX)²=1+1=2EY²=DY+(EY)²=4+4=

有关概率论方差的问题D(X+Y)=D(X)+D(Y)+2E{(X-E(X))(Y-E(Y))} 为什么x y 独立时2E

首先,当xy独立时,E(XY)=E(X)*E(Y)这个好证明吧,利用xy相互独立时P(X=xi,Y=yi)=P(X=xi)*P(Y=yi),以及期望的定义计算就可以得到,就不详细说了然后,由上面的结论

设y=[e^x+e^(-x)]^2,求dy

dy=2[e^x+e^(-x)]*[e^x-e^(-x)]dx再问:��������ϸ����再答:��������ϸ��������Dz��谡̫��û�취再问:������y���

设随机变量X~N(1,4),N(1,2),且X与Y相互独立.则E(X-2Y)=?D(X-2Y)=?

E(aX+BY)=aEx+bEy.D(aX+bY)=a^2DX+b^2DY.所以:E(X-2Y)=EX-2EY=1-2=-1.D(X-2Y)=DX+4DY=4+4*2=12.

概率论的填空题,设X与Y是随机变量,且E(X)=E(Y)=1,D(X)=D(Y )=4,E(XY)=2,则D(2X-3Y

不难还不会做啊.D(2X-3Y+1)=4D(x)+9D(y)-2Cov(2X,3Y)=52-12Cov(X,Y)=52-12[E(XY)-E(X)E(Y)]=40此题要注意题目中未给出X和Y是相互独立

设函数y=y(x)由x=1-e^t和y=t+e^-t确定,求dy/dx和d^2y/dx^2

dx/dt=-e^tdy/dt=1-e^-tdy/dx=(dy/dt)/(dx/dt)=[e^(-t)-1]/e^td(dy/dt)/dt=-e^(-t)*e^t-e^t*[e^(-t)-1]/e^2

设函数y=f(x)由方程sin y+e^x-xy^2=0确定,求d y/d x

Fx=e^x-y^2Fy=cosy-2xydy/dx=-Fx/Fy=(y^2-e^x)/(cosy-2xy)

急救5.设随机变量X与Y相互独立,且E(X)=E(Y)=1,D(X)=2,D(Y)=3,试求(1)D(X-Y) (2)D

D(-y)=(-1)^2*D(y)=3,E(-y)=-E(y)=-1,E(-xy)=-E(xy)=-E(x)E(y)=-1,D(x-y)=D(x)+D(-y)+2*{E(-xy)-E(x)E(y)}=

设E(X)=1,E(Y)=2,D(X)=1,D(Y)=4 ,相关系数r=0.6,设Z=(2X-Y+1)^2 ,则其数学期

=cov(X,Y)/[D(X)*D(Y)]^(1/2),代入D(X)=1,D(Y)=4,相关系数r=0.6得cov(X,Y)=E(XY)-E(X)E(Y)=1.2,代入E(X)=1,E(Y)=2,得E

设随机变量X,Y相互独立,且E(X)=E(Y)=1,D(X)=2,D(Y)=4,则D(XY)=______

E{[XY-E(XY)]^2}=E(X^2Y^2)-E(XY)^2=E(X^2)*E(Y^2)-E(X)^2*E(Y)^2=[D(X)+E(X)^2][D(Y)+E(Y)^2]-E(X)^2*E(Y)

设y=y(x)由方程xe^f(u)=e^y确定,其中f的二阶可导,且f'≠1求d^2(y)/dx^2

xe^f(u)=e^yx=e^[y-f(u)]1=e^[y-f(u)][y'-f'(u)u']y'=e^[f(u)-y]+f'(u)u'y''={e^[f(u)-y]+f'(u)u'}=e^[f(u)

设X,Y,Z是三个随机变量,已知E(X)=E(Y)=1,E(Z)=-1;D(X)=D(Y)=D(Z)=2;P(X,Y)=

ρ(x,y)=cov(x,y)/(√D(x)√D(y))=[E(X,Y)-E(X)E(Y)]/2=0cov(x,y)=0同理cov(x,z)=1cov(y,z)=-1E(W)=E(X)+E(Y)+E(