设E(X)=-2,D(Y)=1,E(Y)=2,D(Y)=4,且X与Y独立,试估计
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 02:00:14
xy+e^y=y+1(1)求d^2y/dx^2在x=0处的值:(1)两边分别对x求导:y+xy'+e^yy'=y'y/y'+x+e^y=1(2)(2)两边对x再求导一次:(y'y'-yy'')/y'^
X,Y是两个相互独立的随机变量,则D(X-Y)=D(X)+(-1)^2*D(Y)=5D(X)=E(X^2)-[E(X)]^2E(X^2)=2+1=3同理E(Y^2)=3+1=4而cov(X,Y)=0,
E[(X+Y)^2]=D(X+y)+[E(x+y)]^2,D(X+y)=D(x)+D(y)=2.E(x+y)=E(x)+E(y)=0;所以E[(X+Y)^2]=2不对么?
∵X,Y相互独立,∴X^2,Y^2也相互独立(1)D(XY)=E[XY-E(XY)]^2=E(XY-EXEY)^2=E(X^2Y^2)=E(X^2)E(Y^2)=E[(X-EX)^2]E[(Y-EY)
E[(X+Y)^2]=E[(X-1+Y-1+2)^2]=E(X-1)^2+E(Y-1)^2+4+2*E(X-1)(Y-1)+2*2*E(X-1)+2*2*E(Y-1)=D(X)+D(Y)+4+0+0+
Z=(2X-Y+1)²=4X²-4XY+Y²+4X-2Y+1EX²=DX+(EX)²=1+1=2EY²=DY+(EY)²=4+4=
首先,当xy独立时,E(XY)=E(X)*E(Y)这个好证明吧,利用xy相互独立时P(X=xi,Y=yi)=P(X=xi)*P(Y=yi),以及期望的定义计算就可以得到,就不详细说了然后,由上面的结论
dy=2[e^x+e^(-x)]*[e^x-e^(-x)]dx再问:��������ϸ����再答:��������ϸ��������Dz��谡̫��û�취再问:������y���
这个概率论课本里面直接有公式啊
E(aX+BY)=aEx+bEy.D(aX+bY)=a^2DX+b^2DY.所以:E(X-2Y)=EX-2EY=1-2=-1.D(X-2Y)=DX+4DY=4+4*2=12.
不难还不会做啊.D(2X-3Y+1)=4D(x)+9D(y)-2Cov(2X,3Y)=52-12Cov(X,Y)=52-12[E(XY)-E(X)E(Y)]=40此题要注意题目中未给出X和Y是相互独立
dx/dt=-e^tdy/dt=1-e^-tdy/dx=(dy/dt)/(dx/dt)=[e^(-t)-1]/e^td(dy/dt)/dt=-e^(-t)*e^t-e^t*[e^(-t)-1]/e^2
Fx=e^x-y^2Fy=cosy-2xydy/dx=-Fx/Fy=(y^2-e^x)/(cosy-2xy)
D(-y)=(-1)^2*D(y)=3,E(-y)=-E(y)=-1,E(-xy)=-E(xy)=-E(x)E(y)=-1,D(x-y)=D(x)+D(-y)+2*{E(-xy)-E(x)E(y)}=
=cov(X,Y)/[D(X)*D(Y)]^(1/2),代入D(X)=1,D(Y)=4,相关系数r=0.6得cov(X,Y)=E(XY)-E(X)E(Y)=1.2,代入E(X)=1,E(Y)=2,得E
E{[XY-E(XY)]^2}=E(X^2Y^2)-E(XY)^2=E(X^2)*E(Y^2)-E(X)^2*E(Y)^2=[D(X)+E(X)^2][D(Y)+E(Y)^2]-E(X)^2*E(Y)
xe^f(u)=e^yx=e^[y-f(u)]1=e^[y-f(u)][y'-f'(u)u']y'=e^[f(u)-y]+f'(u)u'y''={e^[f(u)-y]+f'(u)u'}=e^[f(u)
ρ(x,y)=cov(x,y)/(√D(x)√D(y))=[E(X,Y)-E(X)E(Y)]/2=0cov(x,y)=0同理cov(x,z)=1cov(y,z)=-1E(W)=E(X)+E(Y)+E(