设f(x) 2*在0到一区间上对f(t)dt积分,求f(x)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 17:10:36
∫[0,a][f(x)+f(2a-x)]dx=∫[0,a]f(x)dx+∫[0,a]f(2a-x)dx令t=2a-x,x=2a-t,dx=-dt,x=0时,t=2a,x-a时,t=a因此上式变为=∫[
这道题是错的.给你举一个例子:x+1x∈(0,2a)分段函数f(x)=0,x=0x=2a这个函数符合题目的条件,但是你画出来看一下就知道结论是不可能的.如果把这个题目改成闭区间[0,2a]就可以做了:
单调性只有在一段连续区间上才恒有意义(也存在特殊情况,分段函数中有可能在两段三段区间中恒有意义,但总之是在区间上才有意义),所以说一个点是不存在单调性的,-6到-2开区间和闭区间对连续函数的单调性来说
答案不错,是2/3主要运用奇函数在对称区间上积分为0令F(x)=x·[f(x)+f(-x)],x∈(-1,1),则F(-x)=(-x)·[f(-x)+f(x)]=-F(x)∴F(x)是(-1,1)上的
f(0)f(1)
∫(1,x)tf(t)dt=xf(x)+x^2,当x=1时,0=1*f(1)+1^2=f(1)+1,f(1)=-1,两边对x求导数xf(x)=f(x)+xf'(x)+2x,初值条件为f(1)=-1,解
∫f(x)dx=sinx/x+Cf(x)=(xcosx-sinx)/x^2∫x^3f'(x)dx=x^3f(x)-∫3x^2f(x)dx=x^2cosx-xsinx-3∫(xcosx-sinx)dx=
设F(x)=f(x+a)-f(x),则F(x)在[0a]上连续所以F(a)F(0)=[f(2a)-f(a)][f(a)-f(0)],又f(2a)=f(0)所以F(a)F(0)=[f(0)-f(a)][
sin(π-t)=sintx=π-tdx=-dtx=0t=πx=πt=0∫(0~π)xf(sinx)dx=-∫(π~0)[π-t]f(sint)dt=∫(0~π)(π-t)f(sint)dt=∫(0~
1:因为a=f(1)=f(0.5+0.5)=f(0.5)*f(0.5),所以f(0.5)=a^(1/2),同理得f(0.25)=a^(1/4)2:设任意的x关于直线x=1对称对称的点为(2-x),坐标
是选A再问:过程呢再答:这不是选择题吗?还要过程?首先是奇函数,所以f(0)=0,即2^0-a=0,a=1,然后,f(5)=-f(-5)=-f(1)=-1;还有,f(3)=-f(-3)=-f(3)所以
因为是偶函数,则f(1-m)=f(m-1)你可以画一个符合这个函数的图像,比如对称轴为Y轴的二次函数,当m小于零显然不行,当m大于零m-1小于零,根据图像可知m大于0.5时成立m大于1时显然成立综上所
f(x)在区间[-6,-2]上递减,在区间[-2,11]上递增,那最值点就是f(-2)啊再问:为什么啊?亲,,我要详解再答:亲,你画个图就可以了。先递减再递增肯定在-2处取得最小值
(1).f(x)=lnx+ln(x+2)+x,定义域x>0,定义域上lnx、ln(x+2)、x均为增函数所以f(x)的单调区间为x>0(2).a>0,f(x)在(0,1]上单增,所以f(x)最大值=f
定积分b到af(x)dx=0=(a-b)f(t)t(b,a)a不等于b,f(t)=0所以在(a,b)上恒有f(x)恒=0
(1)证明:任取0≤x1-x2≥-2,∵f(x)在区间[-2,0]上单调递增函数,∴f(-x1)>f(-x2),又f(x)为偶函数,∴得-f(x1)>-f(x2),即f(x1)
(Ⅰ)由于f(2-x)=f(2+x),f(7-x)=f(7+x)可知f(x)的对称轴为x=2和x=7,即f(x)不是奇函数.联立f(2-x)=f(2+x)f(7-x)=f(7+x)推得f(4-x)=f
设定义在R上的偶函数f(x)满足f(x+2)=f(x),f'(x)是f(x)的导函数,当x属于0到1时闭区间,0≤f(x)≤1,当x属于0到2开区间且x不等于1时,(x-1)f'(x)
x>=2时 f(x)=x乘(x一2) 0<=x<=2时 f(x)=x乘(2一x)