设f(x) 为可微函数,则在点x处 ,且 存在,则 是
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:40:14
f(-x)的导函数为f'(-x)*(-1)f(-x)在x=a处的导数f'(-a)(-1)=A则f(x)在x=-a处的导数为f'(x)在x=-a处的值f'(-a)=-A再问:f'(-x)*(-1)这个是
lim(x->0)[f(1)-f(1-x)]/2x=1lim(x->0)[f(1)-f(1-x)]/x=2即曲线在(1,f(1))处切线斜率为2
导数的定义是f'(a)=lim[f(a)-f(a+△x)]/△x△x→0而不是f'(a)=lim[f(a)-f(a-△x)]/△x△x→0注意中间是加号,不是减号.
由题,设1-x=t,则lim[1+f(t)]/2(1-t)=-1,t趋向于1因此可知,limf(t)=-1,t趋向于1;又因为f(x)可导,故其连续,故f(1)=-1.
limx→0[f(1)-f(1-x)]/2x=1/2limx→0[f(1)-f(1-x)]/x=1/2f'(1)=-1f'(1)=-2再问:你好,我想问一下如果我上下同时求导的话,那就是limx→0[
f'(2)=0k=0曲线y=f(x)在点(2,3)处的切线方程为y=3
lim[f(1)-f(1-2x)]/2x=-1(中间是减号吧,否则有错)所以f'(1)=-1即y=f(x)在点(1,f(1))处的斜率为-1.再问:是减号谢谢咯~
由题,设1-x=t,则lim[1+f(t)]/2(1-t)=-1,t趋向于1因此可知,limf(t)=-1,t趋向于1;又因为f(x)可导,故其连续,故f(1)=-1.同时,上极限式可变为:lim[f
lim[f(1)-f(1-x)]/2x=-2化为:lim[f(1-x)-f(1)]/(-x)=-4因此有f'(1)=-4
lim[f(1)-f(1-2x)]/2x=lim[f(1)-f(1-2x)]/(0-2x)=f'(1)=-1∴曲线y=f(x)在点(1,f(1))处的斜率是-1再问:f'(1)=-1怎么来的?再答:f
由题,设1-x=t,则lim[4+f(t)]/2(1-t)=-1,t趋向于1因此可知,limf(t)=-4,t趋向于1;又因为f(x)可导,故其连续,故f(1)=-4.同时,上极限式可变为:lim[f
若limf'(x0)=A,则lim[x→x0][f(x)-f(x0)]/(x-x0)=A因此lim[x→x0+][f(x)-f(x0)]/(x-x0)=Alim[x→x0-][f(x)-f(x0)]/
不行极值点书里没定义吗?光是f'(c)=0不行,还要f''(c)≠0例如y=x³的0点不是极值点
dz=f'x(x/y)dx+f'y(x/y)dy=[f'(x/y)/y]dx+f'(x/y)(-x/y²)dy
两边对x求导得:2yy'*f(x)+y^2f'(x)+f(x)+xf'(x)=2x得:y'=[2x-xf'(x)-y^2f'(x)]/(2yf(x)]dy=[2x-xf'(x)-y^2f'(x)]/(
x=0,f(x)=1,即(0,1)是切点.求导,f(x)的导数为-cosx/(1+sinx)^2,其在x=0的值为-1,由导数的几何意义,切线的斜率为-1.由点斜式得,切线方程是x+y-1=0
式子已经出来了,讨论下就行,当x^2-1>0的时候,即x>1或者x0,即增区间为(-∞,-1)∪(1,+∞)
lim0>(f(1)-f(1-x))/x=-1故f'(1)=lim0>[f(1-x)-f(1)]/(-x)=-1,周期为4的周期函数f(x)有f(x)=f(x+4)求导得f`(x)=f`(x+4)f`