设f(x) 为可微函数,则在点x处 ,且 存在,则 是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:40:14
设f(x) 为可微函数,则在点x处 ,且 存在,则 是
设函数f(x)在R上处处可导,已知f(-x)在x=a处的导数为A,则f(x)在x=-a处的导数为.

f(-x)的导函数为f'(-x)*(-1)f(-x)在x=a处的导数f'(-a)(-1)=A则f(x)在x=-a处的导数为f'(x)在x=-a处的值f'(-a)=-A再问:f'(-x)*(-1)这个是

设f(x)为可导函数,且满足条件lim(x->0)[f(1)-f(1-x)]/2x=1,则曲线y=f(x)在(1,f(x

lim(x->0)[f(1)-f(1-x)]/2x=1lim(x->0)[f(1)-f(1-x)]/x=2即曲线在(1,f(1))处切线斜率为2

设函数f(x)在点x=a可导,求lim[f(a)-f(a-△x)]/△x △x→0

导数的定义是f'(a)=lim[f(a)-f(a+△x)]/△x△x→0而不是f'(a)=lim[f(a)-f(a-△x)]/△x△x→0注意中间是加号,不是减号.

设f(x)可到函数,且满足lim(f(1)-f(1-△x))/(△x)=-1,则曲线y=f(x)在点(1,f(x))处的

由题,设1-x=t,则lim[1+f(t)]/2(1-t)=-1,t趋向于1因此可知,limf(t)=-1,t趋向于1;又因为f(x)可导,故其连续,故f(1)=-1.

设f(x)为可导函数且满足 limx→0 [f(1)-f(1-x)]/2x = -1 ,则曲线y=f(x)在点(1,f(

limx→0[f(1)-f(1-x)]/2x=1/2limx→0[f(1)-f(1-x)]/x=1/2f'(1)=-1f'(1)=-2再问:你好,我想问一下如果我上下同时求导的话,那就是limx→0[

设f(x)为可导函数,且满足lim[f(1)+f(1-2x)]/2x=-1,x趋于0时,求曲线y=f(x)在点(1,f(

lim[f(1)-f(1-2x)]/2x=-1(中间是减号吧,否则有错)所以f'(1)=-1即y=f(x)在点(1,f(1))处的斜率为-1.再问:是减号谢谢咯~

设f(x)为可导函数,且满足lim[f(1)+f(1-x)]/2x=-1,x趋于0时,求曲线y=f(x)在点(1,f(1

由题,设1-x=t,则lim[1+f(t)]/2(1-t)=-1,t趋向于1因此可知,limf(t)=-1,t趋向于1;又因为f(x)可导,故其连续,故f(1)=-1.同时,上极限式可变为:lim[f

设f(x)为可导函数,且满足lim[f(1)-f(1-x)]/2x=-2,x趋于0时,求曲线y=f(x)在点(1,f(1

lim[f(1)-f(1-x)]/2x=-2化为:lim[f(1-x)-f(1)]/(-x)=-4因此有f'(1)=-4

设f(x)为可导函数,且满足lim[f(1)+f(1-2x)]/2x=-1,x趋于0时,求曲线y=f(x)在点(1,f(

lim[f(1)-f(1-2x)]/2x=lim[f(1)-f(1-2x)]/(0-2x)=f'(1)=-1∴曲线y=f(x)在点(1,f(1))处的斜率是-1再问:f'(1)=-1怎么来的?再答:f

设f(x)为可导函数,且满足lim[4+f(1-x)]/2x=-1,x趋于0时,求曲线y=f(x)在点(,f(1))处的

由题,设1-x=t,则lim[4+f(t)]/2(1-t)=-1,t趋向于1因此可知,limf(t)=-4,t趋向于1;又因为f(x)可导,故其连续,故f(1)=-4.同时,上极限式可变为:lim[f

设函数f(x)在点x0的某邻域内有定义,则f(x)在点x0可导的充分必要条件是

若limf'(x0)=A,则lim[x→x0][f(x)-f(x0)]/(x-x0)=A因此lim[x→x0+][f(x)-f(x0)]/(x-x0)=Alim[x→x0-][f(x)-f(x0)]/

高数:可微的一个问题设函数在f(x)在c点附近可微,且f'(c)=0,那么可否推出c是f(x)的极值点?为何?

不行极值点书里没定义吗?光是f'(c)=0不行,还要f''(c)≠0例如y=x³的0点不是极值点

设z=f(x/y)且f为可微函数,则dz=

dz=f'x(x/y)dx+f'y(x/y)dy=[f'(x/y)/y]dx+f'(x/y)(-x/y²)dy

设函数y=y(x)由方程y^2 f(x)+xf(x)=x^2确定,其中f(x)为可微函数,求dy.

两边对x求导得:2yy'*f(x)+y^2f'(x)+f(x)+xf'(x)=2x得:y'=[2x-xf'(x)-y^2f'(x)]/(2yf(x)]dy=[2x-xf'(x)-y^2f'(x)]/(

设函数f(x)=1/1+sinx ,则它在x=0点的切线方程为?

x=0,f(x)=1,即(0,1)是切点.求导,f(x)的导数为-cosx/(1+sinx)^2,其在x=0的值为-1,由导数的几何意义,切线的斜率为-1.由点斜式得,切线方程是x+y-1=0

设R上的可导函数f(x),满足(x^2-1)乘f(x)的导函数>0,则f(x)的增区间为?

式子已经出来了,讨论下就行,当x^2-1>0的时候,即x>1或者x0,即增区间为(-∞,-1)∪(1,+∞)

设周期为4的周期函数f(x)在R可导,且lim0>(f(1)-f(1-x)/x=-1,则曲线y=f(x)在点(5,f(5

lim0>(f(1)-f(1-x))/x=-1故f'(1)=lim0>[f(1-x)-f(1)]/(-x)=-1,周期为4的周期函数f(x)有f(x)=f(x+4)求导得f`(x)=f`(x+4)f`