设f(x)=e的x次 1 ax的平方,其中a为正实数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 21:44:19
设f(x)=e的x次 1 ax的平方,其中a为正实数
设函数fx=e的x次方-1-x-ax 若当x≥0,f(x)≥0,求a 的取值范围

f(x)=e^x-1-x-axf'(x)=e^x-(a+1)若a+1≤0,也即a≤-1,则f'(x)>0,f(x)严格单增,故只需f(0)≥0,1-1-(a+1)*0≥0,得0≥0恒成立.故a≤-1时

设函数f(x)=x(e的x次幂—1)—ax²若当x≥0时,f(x)≥0,求a的取值范围

f(x)=x(e^x-1)-ax²==>f(0)=0如果f(x)在(0,+∞)上是增函数即f‘(x)>0,那么对于任意x>0,有:f(x)>f(0)==>f(x)>0从而在闭区间[0,+∞)

已知(x²-3x+1)的5次=ax的5次+bx的4次+cx的3次+dx²+ex+f,求a+c+e的值

当x=1时,(x²-3x+1)的5次=(1-3+1)^5=-1=a+b+c+d+e+f(1)当x=-1时,(x²-3x+1)的5次=(-1+3+1)^5=243=-a+b-c+d-

已知函数f(x)=e的x次-x.设不等式f(x)>ax的解集为P,且{x|0

令g(x)=f(x)-ax=e·x-x-ax不等式f(x)>ax的解集为P,且{x|00当x=0时,1>0恒成立,此时a属于R当x属于(0,2】时,由e·x-x-ax>0,得a

设函数f(x)=e^x-1-x-ax^2 若当x>=0时,f(x)>=0,求a的取值范围

将f(x)求导得到f'(x)=e^x-1-2ax所以当a0是恒成立的所以f(x)是一个增函数那么f(x)最小值是f(0),f(0)>=0即可,显然f(0)=0,所以a0时你可以先画e^x-1=2ax,

函数f(x)=e^x-1-x-ax^2的导数=e^x-x-2ax

ax^2这不是复合函数,这只是幂函数x^2乘以一个常数得到.而x^2的导数为2x常数直接添上即可.

导数问题:设函数f(x)=e的x次方-1-x-ax²

(1)a=0时,F(X)=E^X-1-XF'(X)=e^x-1令f'(x)=0x=0又当x>0时,f'(x)>0当x0时…………a=0时…………(1)中已证a=0时,f(X)min>=0即可,然后求a

设f(x)=e^x/1+ax^2,其中a为正实数(1)当a=4/3时,求f(x)的极值点

(Ⅰ)首先对f(x)求导,将a=代入,令f′(x)=0,解出后判断根的两侧导函数的符号即可.(Ⅱ)因为a>0,所以f(x)为R上为增函数,f′(x)≥0在R上恒成立,转化为二次函数恒成立问题,只要△≤

已知a属于R,求函数f(x)=x的平方*e的ax次幂的单调区间

f(x)的导数为:2x+e的ax次幂+x^2*a*e的ax次幂=e^(ax)*x*(2+ax)所以当a=0时,f(x)的减区间是(-无穷,0】,增区间(0,+无穷)当a0,增区间(-无穷,-2/a】并

高中数学函数题 设a∈R,函数f(x)=e^-x(x^2+ax+1),其中e是自然对数的底数.

请明确一一题目:是f(x)=e^[-x(x^2+ax+1)]?还是f(x)=[e^(-x)](x^2+ax+1)?再问:是f(x)=[e^(-x)](x^2+ax+1)再答:设a∈R,函数f(x)=[

设函数f(x)=x(e的x次方-1)-ax的平方.

第一问不赘述了,求一次导数分解因式令其等于零,划分区间,就出来结果了.第二问.求一次导结果为:e^x+xe^x-2ax-1.记为g(x),如果要原函数在x非负是值也为非负,因f(0)=0,所以只要其导

已知函数f(x)=e^x+ax,g(x)=e^xlnx(1)设曲线y=f(x)在x=1处的切线与直线x+(e-1)y=1

f'(x)=e^x+af'(1)=e+a直线x+(e-1)y=1的斜率为1/(1-e)要保证两个直线垂直,那么斜率相乘为-1所以(e+a)/(1-e)=-1e+a=e-1a=-1若有不懂还可问啊

设函数f(x)=e^x/(1+ax^2),其中a为正实数 1.当a=4/3时,求f(x)的极值点

(1)求导函数可得f′(x)=1+ax2-ax(1+ax2)2•ex①当a=43时,令f′(x)=0,可得4x2-8x+3=0,解得x=32或x=12令f′(x)>0,可得x<12或x>3

设函数f(x)=e的x次幂-1-x-a乘x的二次幂,若a=0,求f(x)的单调区间.

a=0,f(x)=e^x-1-xf'(x)=e^x-1f'(x)=e^x-1>=0,e^x>=1,x>=0故单调增区间是[0,+无穷)f'(x)=e^x-1

设函数f(x)=x(e^x-1)-ax^2若当x≥o时f(x)≥o,求a的取值范围

f(x)=x(e^x-1)-ax2所以f’(x)=e^x(x+1)-2ax-1而f(0)=0要使f(x)>=在x>=0上恒成立则f’(x)>=0要恒成立即e^x(x+1)-2ax-1>=0(这里我认为

设函数f(x)=x乘以e的kx次(k不等于0)

f(x)=xe^kxf'(x)=e^kx+kxe^kx=e^kx(1+kx)由题意y=f'(x)在(-1,1)>=0恒成立由于e^kx>0所以,只需1+kx>=0在(-1,1)恒成立所以1-k>=01

已知f(x)=(ax+1)*e^x的导数

先乘开:f(x)=ax*e^x+1*e^xf'(x)=a*e^x+ax*e^x+0+1*e^x=e^x(ax+1+a)

设a∈R,函数f(x)=e^-x/2(ax^2+a+1),其中e是自然对数的底数,f'(x)等于多少?

f'(x)=2axe^(-x/2)-(1/2)e^(-x/2)(ax^2+a+1)最近不常上,也没想到会有人找我求助……慢了的话不好意思.

设f(x)=e的x次方乘(ax平方+3)当a=-1时,求f(x)的极值.

a=-1f(x)=e^x(-x^2+3)f'(x)=e^x(-x^2+3)+e^x(-2x)=e^x(-x^2-2x+3)令f'(x)>=0则-x^2-2x+3>=0x^2+2x-3再问:若x属于[1

设f(x)=e^x(ax^2+x+1),且曲线y=f(x)在x=1处的切线与x轴平行,求a值,并讨论函数f(x)的单调性

f(x)=e^x(ax^2+x+1)=(ax^2+x+1)e^x对吧?应该不是e的x(ax^2+x+1)次幂对f(x)求导f’(x)=(2ax+1)e^x+(ax^2+x+1)e^x=(ax^2+(2