设f(x)为二阶可导函数,求y=f(f(x))的二阶导数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:04:51
设f(x)为二阶可导函数,求y=f(f(x))的二阶导数
设随机变量x的概率密度为见图、 F(x)是X的分布函数,求随机变量Y=F(X)的分布函数

分位数变换,均匀分布再问:给定的f(x)怎么用?再答:取c属于(0,1)考虑P(Y

设f x 为可导函数,y=f^2(x+arctanx),求dy/dx

令u=x+arctanx,则u'=1+1/(1+x^2)则y=f^2(u)dy/dx=2f(u)f'(u)u'=2f(u)f'(u)[1+1/(x+x^2)]

设f(u,v)为二元可微函数,z=f(x^y,y^x),求x,y的偏导

令u=x^yv=y^xdz/dx=dz/du*du/dx+dz/dv*dv/dx=df/du*y*x^(y-1)+df/dv*lny*y^xdz/dy=dz/du*du/dy+dz/dv*dv/dy=

设Z=f(xz,z/y)确定Z为x,y的函数求dz

f对第1个变量的偏导函数记作f1,第2个变量的偏导函数记作f2,dz=f1*d(xz)+f2*d(z/y)...[注:写完整的话是f1(xz,z/y),f2也如此]=f1*(xdz+zdx)+f2*(

设f(x)为可导函数,求dy/dx (1)y=f(tanx) (2)y=f(x^2)+lnf(x)

1)y'=f'(tanx)*(tanx)'=f'(tanx)*(secx)^22)y'=f'(x^2)*2x+f'(x)/f(x)

设函数y=f(x)的定义域为[0,1],求函数y=f(x+a)+f(x-a)的定义域

∵函数f(x)的定义域为[0,1],在f(x+a)中,0≤x+a≤1,即-a≤x≤1-a,在f(x-a)中,0≤x-a≤1,即a≤x≤1+a,∴函数y=f(x+a)+f(x-a)的定义域就是集合{x|

设随机变量x服从参数为2的指数分布,随机变量Y=X^2,F(x,y)为(X,Y)的分布函数,求F(3,4).

这个题目没错F(3,4)=P{X≤3,Y≤4}=P{X≤3,X^2≤4}=P{-2≤X≤2}直接求结果,不要先求分布函数,那样很麻烦的

设函数f(x)定义域为R,且满足f(xy)=f(x)+f(y),求f(0)与f(1)的值

(1)求f(0)与f(1)的值f(1)=f(1*1)=f(1)+f(1)f(1)=0f(0*0)=f(0)=f(0)+f(0)f(0)=0(2)求证f(1/x)=-f(x)f(x*1/x)=f(1)=

设连续型随机变量的密度函数为f(x),分布函数为F(x),求Y=1/X的密度函数

Y=1/X可以推出X=h(Y)=1/Yh的导数h'(y)=-1/(y^2)根据公式可以求出来Y的密度函数:g(y)=f(1/y)|h'(y)|=f(1/y)|-1/(y^2)|其中f是X的密度函数~希

设函数y=y(x)由方程y^2 f(x)+xf(x)=x^2确定,其中f(x)为可微函数,求dy.

两边对x求导得:2yy'*f(x)+y^2f'(x)+f(x)+xf'(x)=2x得:y'=[2x-xf'(x)-y^2f'(x)]/(2yf(x)]dy=[2x-xf'(x)-y^2f'(x)]/(

设函数y=f(x)二阶可导,f'(x)

画图可以知道选D再问:f(x)不是单减吗?再答:噢,那画错了选A

1、设函数f(x)的定义域为R+,f(xy)=f(x)+f(y)且f(8)=3,求f(根号2)

1.f(8)=f(2)+f(4)=f(2)+f(2)+f(2)=3,所以f(2)=1f(2)=f(√2)+f(√2)f(√2)=1/221.原式定义域为R,那么ax^2+4ax+3=0无解a(x+2)

设f(x)为可导函数,求dy/dx:y=f(arcsin(1/x))

dyf'(arcsin(1/x))—=-———————dxx√(x^2-1)

设函数f(x)的定义域为正实数,f(xy)=f(x)+f(y)且f(8)=3,求f根号2

令x=y=2则xy=4所以f(4)=f(2)+f(2)令x=4,y=2则xy=8所以f(8)=f(4)+f(2)=f(2)+f(2)+f(2)=3f(2)=1令x=y=√2则xy=2所以f(2)=f(

设函数y=f(x)的反函数为y=g(x)求f(-x)的反函数?

由y=f(x)的反函数为y=g(x)可知若y=f(x)则x=g(y)则若y=f(-x)则有-x=g(y)x=-g(y)所以f(-x)的反函数为-g(x)