设f(x)在[0,2a]上连续,且f(0) = f(2a),证明,至少有一点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 05:08:39
∫[0,a][f(x)+f(2a-x)]dx=∫[0,a]f(x)dx+∫[0,a]f(2a-x)dx令t=2a-x,x=2a-t,dx=-dt,x=0时,t=2a,x-a时,t=a因此上式变为=∫[
∫(-a,a)f(x)dx=∫(-a,0)f(x)dx+∫(0,a)f(x)dx对∫(-a,0)f(x)dx,令x=-tx=-at=a;x=0t=0;dx=-dt得:∫(-a,0)f(x)dx=∫(a
结论明显不对.楼主回去对照下题有没写错.
证明:由微分中值定理f(x)-f(0)=f'(xo)(x-0)=f'(xo)x,其中x∈(0,a)即:f(x)=f'(xo)x,那么,|f(x)|=|f'(xo)|x≤Mx上式在[0,a]上积分有∫(
不妨设f(a)>0,f(b)>0,则f((a+b)/2)0,F(b)>0,F(c)
F'(x)=【f(x)(x-a)-∫(a,x)f(t)dt】/(x-a)^2=【f(x)(x-a)-f(t0)(x-a)】/(x-a)^2=【f(x)-f(t0)】/(x-a)
F(x)=f(x)–f(x+a),f(x)的定义域为[0,2a];即0
设g(x)=∫f(t)dt,则g'(x)=f(x),g"(x)=f'(x).g(x)在[a,b]二阶连续可导,且g(a)=0,g'(a)=f(a)=0.由带Lagrange余项的Taylor展开,存在
令g(x)=x^2在[a,b]上连续,在(a,b)内可导则柯西中值定理:(f(b)-f(a))/(g(b)-g(a))=f'(ξ)/g'(ξ)所以2ξ[f(b)-f(a)]=(b^2-a^2)f'(ξ
根据柯西中值定理(f(a)-f(b))/(g(a)-g(b))=f'(e)/g'(e)其中e∈[b,a]本题,可把上方的g(x)看成x^2有:(f(a)-f(b))/(a^2-b^2)=f'(e)/2
设g(x)=lnx,因g(x)为初等函数,所以当0
因为x^2是偶函数,而f(x)-f(-x)是奇函数,所以x^2[f(x)-f(-x)]是奇函数由偶倍奇零,得原式=0
题目要证明什么?再问:设f(x)在[a,b]上连续,在(a,b)内可导,(0
设F(x)=e^(-kx)f(x)由f(a)*f(b)>0,f(a)*f((a+b)/2)0F(a)*F((a+b)/2)0F(b)>0F((a+b)/2)再问:我想问一下,F(x)=e^(-kx)f
因为f(a)、f(b)同号,f(a)与f[(a+b)/2]异号则根据连续函数介值定理在(a,(a+b)/2)中至少存在一点M,在((a+b)/2,b)中至少存在一点N,使得f(M)=f(N)=0根据罗
证:记g(x)=lnx,显然g(x),f(x)在[a,b]上满足柯西中值定理条件则存在一点ξ∈(a,b)使得[f(b)-f(a)]/[g(b)-g(a)]=f'(ξ)/g'(ξ)即[f(b)-f(a)
求出F’(x),只要F’(x)>0,则得到F(x)在(a,b】上是单调增加的求得F’(x)=[f’(x)*(x-a)-f(x)+f(a)]/(x-a)^2,则F’(x)的符号由分子决定令分子是G(x)
F(-x)=∫[0,-x]f(t)dt=∫[0,x]f(-u)d(-u)(令t=-u)=∫[0,x]-f(u)(-du)=∫[0,x]f(u)du=F(x),所以F(x)是偶函数.选B.
证明:令k=[pf(c)+qf(d)]/(p+q)无妨设f(c)≤f(d),由于q是正数,所以qf(c)≤qf(d)pf(c)+qf(c)≤pf(c)+qf(d)(p+q)f(c)≤pf(c)+qf(