设f(x)在[a,b]上有连续导数,且f(a)=f(b)=0,证明 .

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 05:11:54
设f(x)在[a,b]上有连续导数,且f(a)=f(b)=0,证明 .
证明设f(x)在有限开区间(a,b)内连续,且f(a+) ,f(b-)存在,则f(x)在(a,b)上一致连续.

令g(x)=f(x)x∈(a,b)g(x)=f(a+)x=ag(x)=f(b-)x=b显然g(x)在[a,b]内连续,所以一致连续.当然在(a,b)连续.g(x)在(a,b)正好为f(x)

设f(x)与g(x)在[a,b]上连续,证明:

(1)用反证法不妨设存在一点p,使f(p)>0,那么连续函数由保号性,存在p一个领域(p-c,p+c),当x∈(p-c,p+c)时,f(x)>0∫f(x)dx=∫f(x)dx+∫f(x)dx+∫f(x

设函数f(x)在[a,b]上连续,在(a,b)内可导且f'(x)

F'(x)=【f(x)(x-a)-∫(a,x)f(t)dt】/(x-a)^2=【f(x)(x-a)-f(t0)(x-a)】/(x-a)^2=【f(x)-f(t0)】/(x-a)

设f‘(x)在[a,b]上连续,且f(a)=0,证明:|∫b a f(x)dx|

设g(x)=∫f(t)dt,则g'(x)=f(x),g"(x)=f'(x).g(x)在[a,b]二阶连续可导,且g(a)=0,g'(a)=f(a)=0.由带Lagrange余项的Taylor展开,存在

设函数f(x)在[a,b]上连续,在(a,b)内可导(0

令g(x)=x^2在[a,b]上连续,在(a,b)内可导则柯西中值定理:(f(b)-f(a))/(g(b)-g(a))=f'(ξ)/g'(ξ)所以2ξ[f(b)-f(a)]=(b^2-a^2)f'(ξ

设函数f(x)在[a,b]上连续,在(a,b)内有二阶导数,且有f(a)=f(b)=0,f(c)>0(a

使用3次拉格朗日定理即可详细过程请见下图

设f(x)在[a,b]上连续,在(a,b)内可导(0

根据柯西中值定理(f(a)-f(b))/(g(a)-g(b))=f'(e)/g'(e)其中e∈[b,a]本题,可把上方的g(x)看成x^2有:(f(a)-f(b))/(a^2-b^2)=f'(e)/2

设f(x)在[a,b]上连续,在(a,b)上可导(0

设g(x)=lnx,因g(x)为初等函数,所以当0

证明:设f(x)在[a,b]上连续,在(a,b)内可导,(0

题目要证明什么?再问:设f(x)在[a,b]上连续,在(a,b)内可导,(0

设函数f(x)在[a,b]上有连续导数,且f(c)=0,a

利用分部积分∫上a下cF(x)f'(x)dx=F(a)f(a)-F(c)f(c)-∫上a下cf^2dx又因为F(a)=f(c)=0,即得

设f(x)在[a,b]上连续,在(a,b)内可导,f(a)f(b)>0,f(a)f[(a+b)/2]0,f(a)f[(a

因为f(a)、f(b)同号,f(a)与f[(a+b)/2]异号则根据连续函数介值定理在(a,(a+b)/2)中至少存在一点M,在((a+b)/2,b)中至少存在一点N,使得f(M)=f(N)=0根据罗

设f(x)在[a,b]上连续,且至少有一个零点,证明f(x)在[a,b]上必有最小零点.

这道题有意思~我来说个方法,你看看行不行.首先假如函数在区间[a,b]内有有限个零点的话,那么有限个数我不管怎么样都可以找出来一个最小的,于是肯定有最小零点.现在只看无限个零点的情况.这些无限个零点构

设f(x)在区间[a,b]上连续,在(a,b)可导,

/>构造辅助函数:F(x)=xf(x),则:F(x)在[a,b]连续,在(a,b)可导,从而F(x)满足拉格朗日中值定理,则:在(a,b)内至少存在一点ξ,使得:F(b)-F(a)b-a=F′(ξ),

设f(x)在[a,b]上连续,在(a,b)内可导,(0

证:记g(x)=lnx,显然g(x),f(x)在[a,b]上满足柯西中值定理条件则存在一点ξ∈(a,b)使得[f(b)-f(a)]/[g(b)-g(a)]=f'(ξ)/g'(ξ)即[f(b)-f(a)

设函数f 在[a,b]上连续,M=max|f(x)|(a

设|f(c)|=max|f(x)|.首先有|f(x)^n|0,当x满足|x-c|=[积分(从c-d到c+d)|f(x)^n|dx]^(1/n)>=[积分(从c-d到c+d)(M-e)^ndx]^(1/

设f(x)在【a,b】上连续,在(a,b)内f''(x)>0,证明:

求出F’(x),只要F’(x)>0,则得到F(x)在(a,b】上是单调增加的求得F’(x)=[f’(x)*(x-a)-f(x)+f(a)]/(x-a)^2,则F’(x)的符号由分子决定令分子是G(x)

设f(x)在[a,b]上连续,a

证明:令k=[pf(c)+qf(d)]/(p+q)无妨设f(c)≤f(d),由于q是正数,所以qf(c)≤qf(d)pf(c)+qf(c)≤pf(c)+qf(d)(p+q)f(c)≤pf(c)+qf(

设f(x)在[a,b]上连续,则f(x)在[a,b]上的平均值是多少?

解题思路:对f(x)积分是x=a,x=b和f(x)围成的面积(或相反数)在除以b-a就是平均的高了也就是平均值解题过程:连续的图,就是一直相连,中间没有任何断开的点。最终答案:略

求大神证明:设f(x)在区间[a,b]上有一阶连续导数,记max|f(x)|=M(x归属于[a,b]),试证M

设f(x)在该区间上平均值为m.|f|最大值在c点取到.必存在区间内一点d,使得f(d)=m.显然,|f(c)-f(d)|