设fx=2根号3sin(π-x)sinx-(sinx-cosx)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 15:19:20
f(x)=-√3sin²x+sinxcosx=√3/2cos2x+1/2sin2x-1/2=sin(2x+π/3)+1/2T=2π/2=πf(π/6)=sin(π/3+π/3)+1/2=(1
f(x)=√3sin²x+sinxcosx=√3[(1-cos2x)/2]+1/2sin2x=1/2sin2x-√3/2cos2x+√3/2=sin(2x-π/3)+√3/2∵x∈[π/2,
设函数fx=sin(φ-2x)(0
你好,这题应该这样1.f(x)=cos(2x+π/3)+sin²X=负二分之根号三sin2x+二分之一所以最大值为﹙√3+1﹚/2最小正周期为π2.可知COSB=1/3sinC=√3/2∵C
f(x)=2√3sinxcosx+2sin^2x-1=√3sin2x-cos2x=2sin(2x-π/6)最小正周期T=π,单调递增区间:2kπ-π/2
即代入可得,x=π/8+kπ(k=1,2,3.)
f(x)=2cosx*sin(x+π/3)-√3sinx^2+sinx*cosx=2cosx*(sinxcosπ/3+cosxsinπ/3))-√3sinx^2+sinx*cosx=sinxcosx+
fx=2cos^2x+2根号3sinxcosx-1=2cos^2x-1+2根号3sinxcosx根据倍角公式,sin2α=2sinαcosαcos2α=2cos^2(α)-1fx=cos2x+根号3s
再问:第5步为什么要提出一个√3/3,sin前面的1/2去哪了?再答:1/2哪去了?哪也没去啊?只是换了一种存在的方式而已:[(√3)/3]×[(√3)/2]=1/2
再答:这是高一的题目吧再答:不谢,复习加油
F(X)=cos(√3x+t)F'(X)=-√3sin(√3x+t)F(X)+F'(X)=cos(√3x+t)-√3sin(√3x+t)是奇函数所以F(0)+F'(0)=0即cost-√3sint=0
答:f(x)=2sin(x-π/3)cosx+sinxcosx+√3(sinx)^2=sin(x-π/3+x)+sin(x-π/3-x)+sinxcosx+(√3/2)(1-cos2x)=sin(2x
f(x)=[1-cos(2x)]/2+sin(2x)+3[1+cos(2x)]/2=sin(2x)+cos(2x)+2=√2sin(2x+π/4)+2.周期T=kπ,k∈Z且k≠0.最小正周期为π.
答:y=f(x)=2√3sinxcosx-2sin²x=√3sin2x+cos2x-1=2*[(√3/2)sin2x+(1/2)cos2x]-1=2sin(2x+π/6)-1y=f(x)关于
化简得到f(x)=2sin(2x-%pi/6)+1x属于(0,2%pi/3),所以f(x)属于(0,3]已知M-2
设函数fx=2cos^2(π/4-x)+sin(2x+π/3)-1=cos(PI/2-2x)+sin(2x+PI/3)=sin(2x)+sin(2x)/2+cos(2x)*sqrt(3)/2=sqrt
(1)化简可得f(x)=(sin(x/2))^2+((√3)/2)sinx-0.5f'(x)=sin(x/2)cos(x/2)+((√3)/2)cosx=sinx+√3cosx=0√3cosx=-si
解答;f(x)=sin(2x+3分之π)∴sin(2x+π/3)=-3/5∵x∈(0,π/2)∴2x+π/3∈(π/3,4π/3)∵sin(2x+π/3)
解1当2kπ-π/2≤2x+π/3≤2kπ+π/2,k属于Z时,y是增函数即2kπ-5π/6≤2x≤2kπ+π/6,k属于Z时,y是增函数即kπ-5π/12≤x≤kπ+π/12,k属于Z时,y是增函数
f(x)=sin(x/2)cos(x/2)+√3*sin²(x/2)+√3/2=1/2*sinx+√3/2*(1-cosx)+√3/2=1/2*sinx-√3/2*cosx+√3=sin(x