设fx=xe^x,gx=1 2x^2 x 令Fx=fx gx 求Fx的最小值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 03:56:47
很高兴为你虽然f(x),g(x)表达式一样,但定义域不同,是两个不同的函数那么:f(x)=x^2-2x=(x-1)^2-1,表示开口向上,顶点在(1,-1),对称轴为x=1的抛物线,因此函数f(x)在
题目还没完吧再问:已知函数.(1)求函数f(x)在(0,2)上的最小值;(2)设g(x)=-x2+2mx-4,若对任意x1∈(0,2),x2∈[1,2],不等式f(x1)≥g(x2)恒成立,求实数m的
令F(x)=G(x),解得x=2(-6舍去)由题意求出F(x)和G(x)的较小的,画出互相可知,当3/2≤x≤2时,F(x)≥G(x),当x>2时,F(x)<G(x)
f(x)+g(x)=x^4+3x-2①则f(-x)+g(-x)=x^4-3x-2②因为f(x)是偶函数,g(x)函数为奇函数所以f(-x)=f(x),g(-x)=-g(x)所以②式可以化为f(x)-g
(1)∵f(x)是奇函数,g(x)是偶函数∴f(-x)=-f(x),g(-x)=g(x)∵f(x)-g(x)=1/(x+1)①∴f(-x)-g(-x)=1/(1-x)-f(x)-g(x)=1/(1-x
(1)对a进行分类讨论:a=2时f(x)在R上单调增加;a《2时x《(a+2)/2时单调增加,(a+2)/2《x《2时单调减小,x》2时单调增加;a》2时x《2时单调增加,2《x《(a+2)/2时单调
f(x)=loga(1+x),g(x)=loga(1-x)h(x)=f(x)-g(x)的定义域就是f(x)和g(x)的定义域的交集,因此,定义域是-1
f'=e^x+xe^x,g'=2ax+1f'-g'=e^x-1+xe^x-2axx>等于0时.恒有fx>等于gxf'-g'>0,解得a>0
x+1>0=>x>-1①3x+2>0=>x>-2/3②g(x)>=f(x)=>g(x)-f(x)>=0即log2[(3x+2)/(x+1)]>=0所以(3x+2)/(x+1)>=1解得x>=-1/2③
1)h(x)=2x=f(x)+g(x)1)以-x代入x,得:h(-x)=-2x=f(-x)+g(-x),因f(-x)=f(x),g(-x)=-g(x),所以此式化为:-2x=f(x)-g(x)2)1)
1.g(x)+f(x)=x^(1/2)----(1).g(x)-f(x)=x^(-1/2)---(2).(1)+(2):2g(x)=x^(1/2)+x^(-1/2).g(x)=(1/2)[x^(1/2
解题的思路:f(x),g(x)的增区间的交集包含(a,a+2);求导,获得增区间;f'(x)=3x²+2ax-a²,增区间为(-∞,a/3],[a,+∞);
fx=f’x,不可能啊再问:fx-f’x再问:fx-f’x再答:设函数f(x)=x³+bx²+cx,且g(x)=f(x)-f’(x)为奇函数,①求b、c的值;②求g(x)的单调区间
所以f(-x)-g(-x)=x^2+x所以-f(x)-g(x)=x^2+xf(x)+g(x)=-x^2-x②f(x)-g(x)=x^2-x①①+②得2f(x)=-2xf(x)=x带入①得x-g(x)=
1.先对Fx求导,由题意知F`(1/2)=0可得出a的值2.由F`(x)=2a^2,再根据x的范围可解
因f1=2所以m=1易知fx为奇函数所以F(-x)=f(-x)Xg(-x)=f(x)Xg(x)=F(x)所以F(x)为偶函数
f(x)=2x^2-(k^2+k+1)x+5,gx=k^2x-kp(x)=f(x)+g(x)=2x^2-(k+1)x+5-kp(x)在(1,4)上有零点即存在x∈(1,4),使得2x^2-(k+1)x
(1)∵cos2x=2cos^2x-1∴f(x)=1/2+cos(2x+π/6)/2对称轴2x0+π/6=π+2kπx0=5π/12+kπg(x0)=1+1/2sin(5π/6+2kπ)=5/4(2)