设fx在x=2处是连续导数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:28:50
fx=-2x^2-x再问:为啥再问:就因为是奇函数再答:令x小于0,则fx等于负的f(-x),然后将那个解析式中的x换成-x来算再问:整体是个负值?再答:对再问:答案是-1?
lim(x-->0)[xf(x)+x+ln(1+x)-x]/x^2=3/2==>lim(x-->0)[f(x)+1]/x+lim(x-->0)[ln(1+x)-x]/x^2=3/2==>lim(x--
相切就是切线斜率相同.故在x=0点,f'(x)=(sinx)'即f'(0)=1而f(x)又是过原点的故f(0)=0那么limxf(2/x)=2*limf(2/x)/(2/x)令t=2/x得limf(2
因为limf(x)/x存在,且x=0处连续,所以f(0)=0,所以limf(x)/x=lim[f(x)-f(0)]/x-0=f'(0),所以f(x)在x=0处可导
再问:-x怎么变成x的再答:那一步令u=-t。所以上下限都加负号
分子上第1个负号应为正号,否则极限不存在
对F(x,y)中的x求偏导得f‘(x0)再对y求偏导得0要求F(x,y)连续利用可导必连续定理对其求x和y的偏导得F’(x0,y0)=f‘(x0)+0为常数所以连续
原式即证:e^x>lnx+2∵e^x>x+1(用导数证)x-1>lnx(用导数证)∴e^x>x+1=x-1+2>lnx+2结论得证(上面的大于号都带等但不同是取等)
由 φ(x)=f(x,f(x,x)),可得 φ'(x)=f1(x,f(x,x))+f2(x,f(x,x))*[f1(x,x)+f2(x,x)],于是 φ'(1)=f1(1,f(1,1))+
1、设g(a)=0,lim[x→a][F(x)-F(a)]/(x-a)=lim[x→a][f(x)g(x)-f(a)g(a)]/(x-a)=lim[x→a]f(x)g(x)/(x-a)=lim[x→a
1=lim(x→0)F(x)所以lim(x→0)f(x)=01=lim(x→0)F(x)=lim(x→0)f(x)/x+lim(x→0)3ln(1+x)/x=lim(x→0)(f(x)-f(0))/(
f'(1)=1^2-2*f'(1)*1+1剩下的自己求解了!
充分性.若f(0)=0,则F'(0)=lim(h->0)[(1+|sinh|)f(h)]/h=lim(h->0)f(h)/h=f'(0)即充分性成立.必要性.若F'(0)存在,有F'(0)=lim(h
请稍等再答:首先f'(x)=3ax²-3,所以g(x)=ax^3+3ax²-3x-3,则g'(x)=3ax²+6ax-3由已知,g(x)在[0,2]上递减,所以在[0,2
lim[x-->0](((1/v(x))+1/2)/x)=lim[x-->0](((1/v(x))-1/v(0))/x)=[1/v(x)]'|x=0=-v'(x)/v²(x)|x=0=-v'
lim(x-->2)f(x)=0=f(2)(分母-->0,分子一定趋于0,否则极限不存在)那么f`(2)=lim(x-->2)f(x)-f(2)/x-2=lim(x-->2)f(x)/x-2=-3
利用fx+2=-fx得到:f(7.5)=-f(5.5)=f(3.5)=-f(1.5)=f(-0.5)再利用fx是定义在r上的奇函数得到:f(-0.5)=-f(0.5)再利用当0
不能,应该对xy的偏倒数都存在且相等
x→0时,1/2√x→∞.要把sin√x与1/√x合在一起讨论,这是个等价无穷小再问:为什么趋于无穷啊?不好意思我高数刚学很多不明白,能解释详细点吗谢谢再答:分子是1,分母趋向于0,分式不就是趋向于∞
lim(x→0+)(d/dx)f(cos√x) =lim(x→0+)f'(cos√x)*(-sin√x)*[1/(2√x)] =(-1/2)*lim(x→0+)f'(cos√x)*lim(x→0+