设fz在区域d内解析
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:49:09
因为二维随机变量(X,Y)在区域D上服从均匀分布,所以当(x,y)∈D时,概率密度f(x,y)为区域D的面积的倒数,当(x,y)不在D内时,f(x,y)为0因为D:0
f(x,y)=1/2,x>0,y>0,x+y
随机变量(X,Y)在区域D服从均匀分布,则联合密度函数P(X,Y)=1/Ω,Ω=1/2即区域D的面积,为直线x=0,y=x,y=1所围的部分,所以P(X,Y)=2
利用Cauchy-Riemann方程即可.由题意有au/ax=av/ay,au/aya=-av/ax,同时又有au/ax+2av/ax=0,au/ay+2av/ay=0,四个方程联立解得au/ax=a
f(z)在D内解析,满足柯西-黎曼方程:又满足8u+9v=2012,对该式求偏导:将柯西-黎曼方程代入可得:所以f(z)在D内必为一常数
用泰勒展开式做.再问:不会吧?这个题怎么用泰勒展开式啊?我只知道得让四个偏导为零,但我只能得到四个偏导在z▫为零。再答:在z0处泰勒展开。解析函数的泰勒展开。
本题是几何概型问题,区域E的面积为:S=2×12+∫1121xdx=1+lnx|112=1-ln12=1+ln2∴“该点在E中的概率”事件对应的区域面积为1+ln2,矩形的面积为2由集合概率的求解可得
本题是几何概型问题,区域E的面积为:S1=∫20x2dx=13x3|20=83,∴“该点在E中的概率”事件对应的区域面积为83,则落在E内的点的概率是838=13.设落在E内的点的个数为n,∴n30=
设f(z)=u(x,y)+iv(x,y).若|f(z)|=0,则推出:f(z)=0.结论正确.若|f(z)|≠0,而|f(z)|在D内恒为常数,表示:{u(x,y)}^2+{v(x,y)^2}=常数≠
令v(x,y)=0不就行了么、、、或者u(x,y)在每处的偏导数都存在
从复变函数导数的定义可知:若f(z)在a可导,则对任意常数c,c·f(z)也在a可导.因此第一问显然.再注意到i·f(z)=-v+i·u,因此u是-v的共轭调和函数,从而-u是v的共轭调和函数.
第一个不定比如f(z)=z在全平面是解析的.但f(z共轭)=z共轭是不解析第二个是可以的.证明方法很多,可以直接用导数定义来验证.做不出来HI我.
v(x,y)+iu(x,y)是解析函数的条件是v(x,y)在区域D内为u(x,y)的共轭调和函数
由题意可得不等式组x≥0y≥0x+y≤2表示平面区域D为如图所示的三角形区域,而点D到坐标原点的距离大于2的区域为图中的阴影部分,故所求的概率为:P=12×2×2−14×π×(2)212×2×2=4−
1)E(X)=E[E(X|Y)],就是先对某Y值上的X积分再对全局积分2)你求出面积,其倒数就是了.3)E(Z)=E(2X+Y)=2E(X)+E(Y)之后如1计算X和Y期望,D(Z)=E(Z^2)-E
设f(z)=u+iv,f(z)的共轭=u-iv,因为解析,所以满足柯西黎曼方程,可以解出来u对x,y的偏导,v对x,y的偏导均为0,则f(z)为常数望采纳~
选择A再问:额。有步骤嘛。。