设f·(x)存在,则limf(x0-2h)-f(x0 h) h=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:56:36
因为f(x)在[a,+∞]上增加且有上界,所以f(x)在[a,+∞]上有上确界,记为b.下面我们将证明数列极限limf(n)=b用定义证:因为b是f(x)在[a,+∞]上确界,所以任意x>=a,f(x
lim(x-a)=0,(x趋于a)limf(x)-f(a)/(x-a)(x-a)=1(x趋于a)lim[f(x)-f(a)]*(x-a)/(x-a)(x-a)=lim[f(x)-f(a)]/(x-a)
因为limf(x)/x存在,且x=0处连续,所以f(0)=0,所以limf(x)/x=lim[f(x)-f(0)]/x-0=f'(0),所以f(x)在x=0处可导
请问F(x)和f(x)有什么关系?是不是F和f是一样的?如果是,那么:首先等价变形一下f(1+3x-5x²)-f(1)/x→f(1+3x-5x²)-f(1)/(3x-5x²
假设limf'(x)=A≠0,不妨设A>0由保号性得,对于存在x0>0使得x>x0时f'(x)>A/2f(x)>f(x0)+(A/2)(x-x0)>M则x>|M-f(x0)|/(A/2)所以x>max
因为limf(x)存在,则limf(x)是数值,没有未知数x则limx->πf(x)=limx->π[sinx/x-π+2limx->πf(x)]=limx->π[sinx/(x-π)]+2limx-
设limf(x)(x→1)=A则limf(x)(x→1)=lim(3x²+2xlimf(x))(x→1)A=3+2A解得A=-3所以f(x)=3x²+2xlimf(x)(x→1)=
参见高等数学上册,极限存在,而且是0/0型,所以必有x趋向于0时limf(x)=0
存在,因为x趋向于0时limf(x)/x存在且x=o处连续所以f(0)=0f'(0)=lim(x->0)f(0+x)-f(0)/x=lim(x->0)f(x)/x所以存在
x→0,limf(x)/x=x→0,limf(x)-f(0)/x=f'(0)
由于f(x)在x=0处连续,即lim{x->0}f(x)=f(0)所以f(0)=lim{x->0}f(x)=lim{x->0}[f(x)/x]*x=lim{x->0}[f(x)/x]*lim{x->0
lim(x→a)f(x)-f(a)/x-a=f'(a)f(x)=1/xf'(x)=-1/x^2f'(a)=-1/a^2再问:第一步我懂了...最后那两个怎么得出来的?f'(x)和f'(a)再答:f'(
找个左右极限不相等的函数,x大于等于0时,f(x)=1,x小于0时,f(x)=-1.这个函数在x=0时就满足你说的..再问:我也知道啊,可就是不会找啊再答:我说的那个分段函数就是呀
f(x-1)=x^2+2x-4设x-1=yx=y+1则f(y)=(y+1)^2+2(y+1)-4=y^2+2y+1+2y+2-4=y^2+4y-1则f(x)=x^2+4x-1limf(x)=-1(x-
lim[f(x)=g(x)】存在,你中间是减号吗那么1.都存在的lim[x-x^2]x---->02.都不存在的lim[1/x-1/sinx]=lim(sinx-x)/xsinx=lim(sinx-x
如果没猜错的话,题目该是:…且当x→b时,limf(x)=A,…那么因为f(x)在[a,b)单调增加,所以f(x)≥f(a),且因为当x→b时,f(x)极限为A,所以f(x)
∵一元函数f(x)在x=1处可导,则f(x)在x=1连续∴lim(x->1)f(x)=f(1)=2即答案是:2望学习了点采纳!
在[x,x+1]上,用拉格朗日中值定理f(x+1)-f(x)=f'(ξ)*1x=lim(x->+∞)f'(ξ)=lim(ξ->+∞)f'(ξ)lim(x->+∞)f'(x)=0再问:lim【f(x+1