设f·(x)存在,则limf(x0-2h)-f(x0 h) h=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:56:36
设f·(x)存在,则limf(x0-2h)-f(x0 h) h=
一道关于极限的证明题设f(x)在[a,+∞]上增加且有上界,证明数列极限limf(n)存在x->+∞

因为f(x)在[a,+∞]上增加且有上界,所以f(x)在[a,+∞]上有上确界,记为b.下面我们将证明数列极限limf(n)=b用定义证:因为b是f(x)在[a,+∞]上确界,所以任意x>=a,f(x

设limf(x)-f(a)/(x-a)(x-a)=1(x趋于a),则f(x)在x=a处取得最小值,为什么

lim(x-a)=0,(x趋于a)limf(x)-f(a)/(x-a)(x-a)=1(x趋于a)lim[f(x)-f(a)]*(x-a)/(x-a)(x-a)=lim[f(x)-f(a)]/(x-a)

设fx在x=0处连续,且limf(x)/x存在,证明f(x)在x=0处可导

因为limf(x)/x存在,且x=0处连续,所以f(0)=0,所以limf(x)/x=lim[f(x)-f(0)]/x-0=f'(0),所以f(x)在x=0处可导

设F(1)的导数存在,求当X趋近于0时limf(1+3x-5x2)-f(1)/x 的值

请问F(x)和f(x)有什么关系?是不是F和f是一样的?如果是,那么:首先等价变形一下f(1+3x-5x²)-f(1)/x→f(1+3x-5x²)-f(1)/(3x-5x²

f(x)在(-∞,+∞)内有三阶导数,x→∞时,limf(x),limf'(x),limf"(x)存在,且,limf"'

假设limf'(x)=A≠0,不妨设A>0由保号性得,对于存在x0>0使得x>x0时f'(x)>A/2f(x)>f(x0)+(A/2)(x-x0)>M则x>|M-f(x0)|/(A/2)所以x>max

高数数学题 ! 求极限: 若lim f(x)存在,且f(x)=sinx/x-π +2limf(x), 则limf(x)=

因为limf(x)存在,则limf(x)是数值,没有未知数x则limx->πf(x)=limx->π[sinx/x-π+2limx->πf(x)]=limx->π[sinx/(x-π)]+2limx-

设极限limf(x) (x→1)存在,且f(x)=3x²+2xlimf(x) (x→1),求f(x)

设limf(x)(x→1)=A则limf(x)(x→1)=lim(3x²+2xlimf(x))(x→1)A=3+2A解得A=-3所以f(x)=3x²+2xlimf(x)(x→1)=

设函数f(x)在x=o处连续,若x趋向于0时limf(x)/x存在,则f '(0)是否存在?为什么.

参见高等数学上册,极限存在,而且是0/0型,所以必有x趋向于0时limf(x)=0

设函数f(x)在x=o处连续,若x趋向于0时limf(x)/x存在,则f '(0)是否存在?为什么

存在,因为x趋向于0时limf(x)/x存在且x=o处连续所以f(0)=0f'(0)=lim(x->0)f(0+x)-f(0)/x=lim(x->0)f(x)/x所以存在

设f(0)=0且极限存在x→0,lim f(x)/x,则 x→0,limf(x)/x=

x→0,limf(x)/x=x→0,limf(x)-f(0)/x=f'(0)

设函数f(x)在x=0处连续,若x趋向于0时limf(x)/x存在

由于f(x)在x=0处连续,即lim{x->0}f(x)=f(0)所以f(0)=lim{x->0}f(x)=lim{x->0}[f(x)/x]*x=lim{x->0}[f(x)/x]*lim{x->0

设f(x)=1/x,则limf(x)-f(a)/x-a等于

lim(x→a)f(x)-f(a)/x-a=f'(a)f(x)=1/xf'(x)=-1/x^2f'(a)=-1/a^2再问:第一步我懂了...最后那两个怎么得出来的?f'(x)和f'(a)再答:f'(

举例f(x),x->x0,limf(x)不存在,lim|f(x)|存在

找个左右极限不相等的函数,x大于等于0时,f(x)=1,x小于0时,f(x)=-1.这个函数在x=0时就满足你说的..再问:我也知道啊,可就是不会找啊再答:我说的那个分段函数就是呀

设函数f(x-1)=x^2+2x-4,则limf(x)=?(x->0 )

f(x-1)=x^2+2x-4设x-1=yx=y+1则f(y)=(y+1)^2+2(y+1)-4=y^2+2y+1+2y+2-4=y^2+4y-1则f(x)=x^2+4x-1limf(x)=-1(x-

已知lim[f(x)=g(x)】存在,则limf(x)与limg(x)是都存在或都不存在,请将都不存在举个例

lim[f(x)=g(x)】存在,你中间是减号吗那么1.都存在的lim[x-x^2]x---->02.都不存在的lim[1/x-1/sinx]=lim(sinx-x)/xsinx=lim(sinx-x

设函数f(x)在[a,b)上单调增加,且存在极限limf(x)=A,证明f(x)在[a,b)上有界

如果没猜错的话,题目该是:…且当x→b时,limf(x)=A,…那么因为f(x)在[a,b)单调增加,所以f(x)≥f(a),且因为当x→b时,f(x)极限为A,所以f(x)

设f(1)=2,且f’(1)=3,则limf(x)=?(x趋向1)

∵一元函数f(x)在x=1处可导,则f(x)在x=1连续∴lim(x->1)f(x)=f(1)=2即答案是:2望学习了点采纳!

如果函数f(x)在(a,+∞)内可导,且limf(x)存在,证明:limf'(x)=0

在[x,x+1]上,用拉格朗日中值定理f(x+1)-f(x)=f'(ξ)*1x=lim(x->+∞)f'(ξ)=lim(ξ->+∞)f'(ξ)lim(x->+∞)f'(x)=0再问:lim【f(x+1