设F是三元可微函数,F(x,x y,x y z)=0,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:08:54
f`(x)g(x)-f(x)g`(x)
∫{x,0}(t-1)f(x-t)dt=0;∫{0,x}(x-u-1)f(u)d(-u)=0……u=x-t;∫{0,x}(x-1)f(u)du-∫{0,x}uf(u)du=0;(x-1)∫{0,x}f
[f(x)/g(x)]`=[f`(x)g(x)-f(x)g`(x)]/[g(x)*g(x)]因为当a
F对各分量的偏导依次记为F1,F2,F3.方程对x求偏导得F1·(2u·∂u/∂x-2x)+F2·2u·∂u/∂x+F3·2u·∂u/
f'(x)g(x)+f(x)g'(x)
曲线积分∫[f(x)+x]ydx+[f'(x)+sinx]dy与路径无关,那么:{[f(x)+x]y}‘y=[f'(x)+sinx]'xf''(x)+cosx=f(x)+xf''(x)-f(x)=x-
3*x^2*f`(x^3)
两边对x求导1-a*δz/δx=f'(y-bz)*(-bδz/δx)整理得:[a-bf'(y-bz)]δz/δx=-1两边对y求导-a*δz/δy=f'(y-bz)*(1-bδz/δy)整理得:[-a
首先证明其实连续函数在根据绝对连续定义证明是绝对连续
设︱f’(x)︱≤M则,对任意x,y∈[a,b]根据拉格朗日中值定理,有︱f(y)–f(x)︱≤M︱y-x︱于是,对任给ε>0,取δ=ε/M,则当︱y-x︱<ε/M=δ时就有︱f(y)–f(x)︱≤M
令y=f(x),∵f(x)可微∴对于任意x.∈[a,b],在[x.-δ,x.δ]有Δy=f(x.Δx)-f(x.)=f'(x.)·Δxο(Δx),∴Δ|y|=|f(x.Δx)|-|f(x.)|≦|Δy
z=f(x,y,z),两边求微分(f'x表示函数f对变量x的偏导数,y、z同义)dz=f'x*dx+f'y*dy+f'z*dz(1-f'z)dz=f'x*dx+f'y*dy∴dz=(f'x*dx+f'
解题过程请参见书宬的回答.这里的答案f(x)=ce^x是不完整的,由书宬的回答的倒数第三行来看,当x=0时,f(0)=0,所以代入f(x)=ce^x中得到c=0.所以本题的正确答案应该是f(x)=0.
dz=f'x(x/y)dx+f'y(x/y)dy=[f'(x/y)/y]dx+f'(x/y)(-x/y²)dy
函数f(x)的图像关于直线x=1对称,则:f(1-x)=f(x+1),所以f(1/3)=f(5/3),f(2/3)=f(4/3),又当x>1时,f(x)=lnx-x,则:f'(x)=1/x-1,当x>
设F(x)=f(x)/g(x)则F'(x)=[f'(x)g(x)-f(x)g'(x)]/[g(x)]平方所以F'(x)f(b)g(x)
等式两边令x=0得f(0)=1等式两边求导:2f(x)-1=f'(x)令y=f(x),则y'=2y-1,此为一阶非齐次线性微分方程,套用通解公式可得通解y=1/2+Ce^(2x).所以f(x)=1/2