设G为群 H为G的子群 H在G中指数为2 求证H必为G的正规子群

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:40:17
设G为群 H为G的子群 H在G中指数为2 求证H必为G的正规子群
设NA为阿伏伽德罗常数的数值,下列说法正确的是 A.已知N2(g) + 3H2(g) 2NH3 (g) △H=-92.4

不正确的焓是状态函数,只随温度有关,还有化学计量数有关,与电子转移量无关的

已知可逆反应:M(g)+N(g)P(g)+Q(g),△H>0.请回答下列问题:(1)在某温度下,反应物的起始浓度分别为:

1.设容器的容积为V则M反应掉0.6V根据比例N也反应掉0.6V0.6V/2.4V=25%2.△H>0为吸热反应.温度升高,M转化率增大3.根据反应式,方程式左右的系数和相等.则反应的总体积不变,即总

工业合成氨的热化学方程式为N2(g)+3H2(g)=2NH3(g)△H=-92.4KJ/mol 在某压强恒定的

解析:本题用三段法.N2+3H22NH3开240变2*50%32平112K=C(NH3)^2/[C(N2)*C(H2)^3]=(2/10)^2/[(1/10)*(1/10)^3]=400注:C(NH3

设f(x).g(x).h(x)为增函数,且f(x)≤g(x)≤h(x).证f(f(x))∠g(g(x))∠h(h(x)

增函数f(x)≤g(x)所以f[f(x)]≤f[g(x)]且令x=g(x)代入f(x)≤g(x)所以f[g(x)]≤g[g(x)]所以f[f(x)]≤g[g(x)]同理得g[g(x)]≤h[h(x)]

【物理】“神舟七号”宇宙飞船离地面高度h,设地球半径为R,地球表面的重力加速度为g.

宇宙飞船做圆周运动,万有引力提供向心力.GMm/(R+h)²=mv²/(R+h)得v=√(GM/(R+h))由换进代换式GM=R²g(可以由地球表面物体引力GMm/R&#

设三角形ABC的外心为O,垂心为H,重心为G,求证:O,G,H三点共线

向量OH=向量OA+向量+OB+向量OC向量OG=(向量OA+向量OB+向量OC)/3,向量OG*3=向量OH所以O、G、H三点共线

抽象代数题目:N是G的极大正规子群的充要条件是G/N为单群 答案说用对应定理

做自然同态f:G->G/N,若G/N是单群,则N必是G的极大正规子群,否则可设H是真包含N的G的正规子群,则G/H≌(G/N)/(H/N),由对应定理f(H)=H/N是G/N的真正规子群(因为H/N≠

f(x)、g(x)为定义在R上的函数,h(x)=f(x)+g(x),

f(x)、g(x)为定义在R上的函数,h(x)=f(x)+g(x)因为f(x)、g(x)均为偶函数可以推出h(x)为偶函数而h(x)为偶函数不能推出f(x)、g(x)均为偶函数可以是h(x)=0,f(

若循环群G的阶是n=pq,p、q是素数.其中子群Gp和Gq的生成元分别为g、h,则g*h是G的生成元.以下推出悖论

1^(1/q)的解不唯一若x=1^(1/q)则x^q=1h也是上式的根(1/q)的结果不是映射,不是一个合理的运算

.已知在一定条件下有CO(g)+H 2 O(g)  CO 2 (g)+H 2 (g),在某一容积为2 L的密闭

BCO(g)+H2O(g) CO2(g)+H2(g),0.2mol  0.2mol   0    &

离散数学(子群)设f和g都是到的群同态,且H={x|x∈G1,f(x)=g(x)},证明H是G1的子群.

证明有定义知H包含于G1对于任意的a,b∈H,有f(a)=g(a),f(b)=g(b)∵f和g都是同态映射,所以必有f(b-¹)=f(b)-¹,g(b-¹)=g(b)-&

设G是群,a是G中一个元素.令 H = { x∈G∣ax = xa }. 试证H是G的一个子群.急!

对任意x,y属于H,(xy)a=x(ya)=x(ay)=(xa)y=a(xy),xy属于H由ax=xa可推出a(1/x)=(1/x)a(1/x是x的逆),所以H是G的子群这就是子群的定义啊.你们书上对

抽象代数证明:设H、K是群G的子群,则(H:H∪K) hK

首先这个证明没有任何问题,看了你的提问和一楼的回答估计你们都没有搞懂A={h(H∩K)|搞懂了你下面的提问就没有问题了.陪集的定义一楼没有搞清楚所以搞成“所谓的每个h(H∩K)都有不止一种表示方法(换

设有限群G恰好具有两个n阶子群H,K,并且G由H,K生成,证明H,K是G的正规子群

我先理解一下你这个题.为了偷懒,我认为H和K是G的仅有的两个不同的n阶子群,除它们以外没有别的n阶子群了(所谓“恰好”).如果不对请告知.这样对于K中的任何元素k,只要证明kHk^(-1)=H即可(因

设H,K分别是群G的阶为3,5的子群,证明H∩G={1}

应该是证明H∩K={1}吧?(1)显然1∈H,且1∈K,即{1}是H∩G的子集;(2)设|H∩K|=m因为H∩K同时为H和K的子群,根据拉格朗日定理,有m|3,且m|5,显然m=1,即|H∩K|=1;

群的证明题设K 和H 都是群G 的子群,试证,若H· K 是G 的子群,则K· H =H·K .

(1)对KH中任意元素kh,由于h^{-1}k^{-1}是HK中元素,而HK是群,所以kh=(h^{-1}k^{-1})^{-1}\inHK,因此,KH是HK的子集;(2)对HK中任意元素x,由HK是

设H是群G的子群,证明:对任意的g属于G ,集合K={g^-1hg|属于H}是G的子群,并证明H与K之间群同构

⑴.看任意k∈K.k=g^-1hg,h∈H.H是子群,h^-1∈H.从而k^-1=(g^-1hg)^-1=g^-1(h^-1)g∈K.①又设:j=g^-1rg∈K,r∈H.kj=(g^-1hg)(g^

群和子群有这个一个题,实在不懂,有哪位大虾帮帮忙证明,设G是交换群,证明G中一切有限阶元素所成集合H是G的一个子群

只需证明H满足群的三个定义:1、单位元:G中的单位元1是有限阶元素,所以1属于H,满足单位元定义.2、封闭性:设a、b是H中任意两个元素,且有a^m=b^n=1,n、m为正整数,则(ab)^(mn)=

已知,在菱形ABCD中,E、F、G、H分别为各边的中点,求证:E、F、G、H四点在同一个圆上.

证明:如图.∵四边形ABCD是菱形,∴AC⊥BD即∠AOD=90°.∵H是AD的中点,∴OH=12AD.同理:OE=12AB,OF=12BC,OG=12CD.∵四边形ABCD是菱形,∴AD=AB=BC

证明群G的子集H是G的子群,当且仅当 h≠Φ,a,b∈H→a(b^-1)∈H

必要性:若H是G的子群,自然非空,并对乘法和取逆封闭,从而H≠∅,并对任意a,b∈H,有ab⁻¹∈H.充分性:首先,由H≠∅,可取a∈H,由条件得e=aa