设L1是沿动圆周x²+y²=t²逆时针方向,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 23:08:40
直线L2与L3之间距离为9(9-R)^2=R^2-3^2R=5设圆方程为(x-a)^2+(y-b)^2=5^2...(1)3x+4y-35=0...(2)a+b=3...(3)由(1)、(2)、(3)
圆弧为圆的1/4,那么∠POQ=90°,那么圆心到PQ的距离为(根号2)/2假设过M点直线为y=k(x+2)kx-y+2k=0点到直线距离d=|2k|/(根号(1+k^2))=(根号2)/2得到k=±
将直线l1的方程化为普通方程得3x-y+a-3=0,将直线l2的方程化为直角坐标方程得3x-y-4=0,由两平行线的距离公式得|a-3+4|10=10⇒|a+1|=10⇒a=9或a=-11.故答案为:
x-3=3-2x解得x=2,坐标(2,-1),
设f(x)=1/x,g(x)=x^2则当f(x)=g(x)时,x=1所以交点为(1,1)对两函数求导f’(x)=-(1/x^2)g'(x)=2x所以L1,L2在(1,1)处的切线分别为L1:y=-x+
2x+y+2=0关于原点对称的直线为L1,若L1与椭圆x^2+y^2/4=1交点A,B,点P为椭圆上动点,则三角形PAB的面积为1/2的P点个数?2x+y+2=0关于原点对称的直线为L1显然L1:2x
先确认一下坐标P(0,未知)E(t,未知)D(t,未知)等腰三角形PDE有无数个最简单的一种求证方法:设ED为等腰三角形的底任意选一个值为t(除了l1和l2的交点的x坐标,不然E和D就是一个点了)(选
由图分析得a(1,1),d(t,t),e(½t+2),根据题意直线x=t与L1,L2分别交于d、e,且e在d的上方 ;那么直线x=t需在点a的左侧,即t<1,且t≠0(若t=0或t
解题思路:设出抛物线上一点P的坐标,然后利用点到直线的距离公式分别求出P到直线l1和直线l2的距离d1和d2,求出d1+d2,利用二次函数求最值的方法即可求出距离之和的最小值解题过程:
由直线l2的解析式,得出斜率k=-1/2;可知L2的倾斜角>90°(倾斜角的范围为0到180°),所以L2倾斜角为180-arctan(1/2);所以两直线的夹角为45-arctan(1/2)
x^2+y^2=R^2,上式=$R^2dS=2pi*R^3
记曲面∑为平面x+y+z=0上以t为边界的圆,其半径是a.取上侧.由斯托克斯公式,∮tydx+zdy+xdz=-∫∫dydz+dzdx+dxdy,∑的法向量是(1,1,1),3个方向余弦都是1/√3,
直线L1:x=1+tcosay=2-tsina的倾斜角为:a,直线L2:x+1=0的倾斜角为:π/2,两直线的夹角为:π/2-a.(a为锐角)
L是Line的缩写,表示直线.L1:y,意思就是直线1的表达式是y=x+1.
L1的方向向量t1=(1,2)L2的方向向量t2=(1,-3)cos=t1t2/|t1||t2|=(1-6)/根号50=-根号2/2所以L1,L2夹角45度
平行斜率相等,这个地方很明显不会重合,所以由斜率相等算出为四分之一排(45度)四分之三排(135度).抱歉,手机上的,打不出来.
f(x)=e^x-∫(0,x)(x-t)f(t)dt=e^x-x∫(0,x)f(t)dt+∫(0,x)t*f(t)dt可知f(0)=1求导:f'(x)=e^x-∫(0,x)f(t)dt-x*f(x)+
用格林公式将一个封闭曲线上的线积分化为在此封闭区域内的面积分∫L(x²+y)dx+(x-y²)dy=(在曲线L围成的封闭区域上积分)∫∫{[∂(x-y²)/&
设P(x,y)=-yQ(x,y)=x那么αP/αy=-1αQ/αx=1根据格林公式(不会自己去查)原式=∫∫[(αQ/αx)-(αP/αy)]dxdy=∫∫2dxdy=2π
既然是求闭曲线积分,就用格林公式化为二重积分那个负号应该是题目打印有误,如果是负的,曲线积分转化为二重积分∫∫(-x)dxdy由于积分区域是圆x^2+y^2=9,关于y轴对称,所以∫∫(-x)dxdy