设lim nan存在,且级数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 19:14:39
令F(x)=x^n+nx-1分别取x=1,x=0,有F(1)=n,F(0)=-1,则F(0)*F(1)0)又显然F(x)在[0,1]上连续,在(0,1)上可导,由零值定理得存在一Xn属于(0,1)使得
1、Sn=(a1+an)n/2所以nan/Sn=2an/(a1+an)=2[a1+(n-1)d]/[2a1+(n-1)d]上下除以(n-1)=2[a1/(n-1)+d]/[2a1/(n-1)+d]n-
1f(x)=f(-x)f'(x)=-f'(-x)f'(0)=-f'(0)f'(0)=02拉格朗日中值定理arctanx2-arctanx1=(1/(1+x^2))(x2-x1)|arctanx2-ar
令F(x)=f(x)-f(a)/[(a-b)(a-c)]×(x-b)x-c)-f(b)/[(b-a)(b-c)]×(x-a)(x-c)-f(c)/[(c-a)(c-b)]×(x-a)(x-b).则F(
先从1到N求和:∑n(an-an-1)=NaN-∑an-1这里求和都是从1开始到N再令N趋于无穷,前面的收敛,后面部分也收敛所以整体收敛
因为|A|=0所以r(A)再问:题目要求B是n阶矩阵,这里只证明了B可以是n×1矩阵呀?再答:令B的第1列为(k1,...,kn)^T,其余列都取0即可.
因为limn^2*un存在,于是n^2*un有界,即存在M>0,使得|n^2*un|
当limx趋于0时,limf(x)/x=f'(0)
楼上正解不过如果f(x)为奇函数,结论成立f(0)=-f(-0),移项得,f(0)=0
正项级数:∑(an-Un):(an-Un)≤(Vn-Un)因为正项级数∑(Vn-Un)收敛(两个收敛级数的差)由比较判别法正项级数:∑(an-Un)收敛.∑an=∑[(an-Un)+Un])收敛:(两
设级数∑n(an-a(n-1))的前n项和为:σn设级数∑an的前n项和为:Sn则:σn=nan-S(n-1)-a0S(n-1)=nan-σn-a0limS(n-1)=lim(nan)-limσn-a
设NUn再问:高手,下边也写出来呗,要步骤,这部分没看呢,要考试啦!再答:∑1/N^2就是收敛的啊
收敛是因为Sn=1/U(1)+1/U(2)-1/U(2)-1/U(3).+(-1)^(n+1)/U(n)+(-1)^(n+1)/U(n+1)注意抵消规律有Sn=1/U(1)+(-1)^(n+1)/U(
马上写来再答:设级数∑An收敛于bn(An-A(n+1))=nAn-(n+1)A(n+1)-A(n+1)Sn=∑(k=1,n)[kAk-(k+1)A(k+1)-A(k+1)]=A1-(n+1)A(n+
该级数收敛1-cosa/n,因为a>0,n充分大之后,a/n趋向于0,cosa/n趋向于1,1-cosa/n单调递减且趋向于0,由莱布尼茨判别法可知,原级数收敛.
∑(Un+U(n+1))=∑Un+∑Uk=(∑Un+∑Uk)-U1=2∑Un-U1=2u-U1再问:答案是2u-U0,U0好奇怪。再答:这个答案不应该是2u-U0.是2u-U1
|(-1)^n(1-cos2a/n)|与B/n^2是等价无穷小,绝对收敛再问:可以帮我解释详细一点吗?我没懂,这个n是趋近于无穷大的,不能用等价代换吧再答:1-cos2(a/n)=2sin²
不一定,比如Un=-/n,Vn=1/nWn=1/n²再问:第一个怎么证明再答:0
f(x)=f(-x),两边取导数,得:f'(x)=f'(-x)(-x)'=-f'(-x),即f'(x)是奇函数,从而f'(0)=0