设limf(x)-b x-a=A
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:31:52
lim(x-a)=0,(x趋于a)limf(x)-f(a)/(x-a)(x-a)=1(x趋于a)lim[f(x)-f(a)]*(x-a)/(x-a)(x-a)=lim[f(x)-f(a)]/(x-a)
因为X趋向于无穷大时,limf(x)=A存在一个M1,则存在一个X>0,当|x|>X时,|f(x)|0,当x属于〔-X,X〕时,|f(x)|
不妨设A>0,B0,表明存在正数a,使得f(-a)>0,同理存在正数b,使得f(b)
f(x+a)-f(x)=f'(ξ)aξ在x和x+a之间limf'(ξ)=k所以lim[f(x+a)-f(x)]=ak补充的回答ξ在x和x+a之间x趋向于无穷大了ξ当然也就无穷大了
由f(-2)=2a-b2=0可得,b=4a∴f(x)=a|x|+4ax=ax+4ax,x>0-ax+4ax,x<0∴函数的定义域为(-∞,0)(0,+∞)∵f(x)有两个单调递增区间当a>0时,函数在
(1)f(x)在R上连续可知,a+|a|e^bx≠0(x属于R)当x=0时,原式=a+|a|≠0,所以a>0;(2)limf(x)=0(X趋于负无穷)可知,当x趋于负无穷时,a+|a|e^bx趋于无穷
可导必连续,所以f(x)在(a,b)上连续辅助函数F(x)在[a,b]上连续再问:f(x)在(a,b)上连续可导,只能推出f(x)在(a,b)上连续,端点是否连续不能确定啊再答:所以辅助函数F(x)把
且limfx=A与limfx=B这句话有点问题,是不是题错了,题上有没有说a不等于b的?再问:左边是X趋向a,右边是趋向正无穷
由limf'(x)/(x-a)=-1,得f'(a)=0,且f"(a)=-1再问:多谢再问:若f(x)在x0点处二阶可导,且lim[(f(x)-f(x0))/(x-x0)^2]=1,x趋近于x0,则函数
如果在计算lim[f(x)+g(x)]时f=g(x)的极限不存在,是不能把极限好直接分配进去的!所以利用反证法,假设lim[f(x)+g(x)]极限存在则由极限的四则运算limg(x)=lim{[f(
再问:再问:我这么写对么再答:可以。再问:嗯谢谢
不能一定要f(x),g(x)的极限都存在时才可以用举个反例:f(x)=x,g(x)=1/x明显limg(x)=0但limf(x)*g(x)=lim1=1≠limg(x)*limf(x)=0有不懂欢迎追
lim(x→a)f(x)-f(a)/x-a=f'(a)f(x)=1/xf'(x)=-1/x^2f'(a)=-1/a^2再问:第一步我懂了...最后那两个怎么得出来的?f'(x)和f'(a)再答:f'(
由lim(x→a)f(x)=|A|,对于任意的ε>0,存在δ>0,当0<|x-a|<δ时,恒有|f(x)-|A||<ε.所以||f(x)|-|A||≤|f(x)-|A||<ε,当0<|x-a|<δ时,
不知道你是学洛必达法则,还是其他的,此时,需要讨论A的值,若A是一实数,则lim(g/f)一定是∞,若A=∞,则lim(g/f)不一定是∞,比如:f=1/x,g=1/x^2,当x趋近于0时,显然满足条
a=1的情况是很特殊的,情况很多,比如大家知道的x→0时(1+x)^(1/x)→e,一般而言,会把:"1^∞”这种形式的极限式叫做“未定型”.用专门的技巧来计算他的极限再问:为什么大于1可直接代入呢?
如果没猜错的话,题目该是:…且当x→b时,limf(x)=A,…那么因为f(x)在[a,b)单调增加,所以f(x)≥f(a),且因为当x→b时,f(x)极限为A,所以f(x)
必要性:因为limf(x)=A【x趋于无穷大】,所以任给正数ε,存在正数M,当│x│>M时,有│f(x)-A│M时,有│f(x)-A│
若A=0,则由lim(x→a)f(x)=0,对于任意的ε>0,存在δ>0,当0<|x-a|<δ时,恒有|f(x)|<ε^2.所以,当0<|x-a|<δ时,|√f(x)|<ε所以,lim(x→a)√f(
在[x,x+1]上,用拉格朗日中值定理f(x+1)-f(x)=f'(ξ)*1x=lim(x->+∞)f'(ξ)=lim(ξ->+∞)f'(ξ)lim(x->+∞)f'(x)=0再问:lim【f(x+1