设LimF(x)=正无穷 ,设Limg(x)=正无穷 ,则下列命题正确的是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:32:03
设LimF(x)=正无穷 ,设Limg(x)=正无穷 ,则下列命题正确的是
设函数f(x)是定义在(0,正无穷)上是增函数,f(2)=1,对任意m,n属于(0,正无穷)

(1)令m=1,n=1得f(mn)=f(1)=f(1)+f(1)所以f(1)=0令m=2,n=2代入得f(4)=f(2)+f(2)=1+1=2(2)f(a)+f(a-3)=f(a×(a-3))=f(a

一道微积分的证明题.设函数f(x)在R上连续,且limf(x)=A(有限值)(x趋向无穷).证明:f(x)在R上必有界.

limf(x)=A(有限值)(x趋向无穷).对ε=1,存在X>0,当|x|>X时.有|f(x)-A|A-1

设y=f(x)在[a,正无穷]上连续,且x趋于正无穷时,f(x)存在,证明:f在[a,正无穷]上有界

证明:x趋于正无穷时,f(x)存在,故存在b,b>a.当x》b时,|f(x)|《M1又y=f(x)在[a,正无穷]上连续,当然在[a,b]上连续,故当x在区间[a,b]时,|f(x)|《M2所以:|f

设f(x)=1/(a+|a|e^bx)在R上连续且limf(x)=0(X趋于负无穷)确定a,b符号

(1)f(x)在R上连续可知,a+|a|e^bx≠0(x属于R)当x=0时,原式=a+|a|≠0,所以a>0;(2)limf(x)=0(X趋于负无穷)可知,当x趋于负无穷时,a+|a|e^bx趋于无穷

设函数f(x)是偶函数,且在(负无穷,0)上是增函数,判断f(x)在(0,正无穷)上的单调性,并加以证明

在(0,正无穷)上是减函数,用单调函数的定义法证明假设x1>x2>0,现在考察f(x1)与f(x2)的大小关系.由x1>x2>0,则-x1

设limf(x)=A,且A>0,证明lim根号f(x)=根号A

再问:再问:我这么写对么再答:可以。再问:嗯谢谢

设f(x)=1/x,则limf(x)-f(a)/x-a等于

lim(x→a)f(x)-f(a)/x-a=f'(a)f(x)=1/xf'(x)=-1/x^2f'(a)=-1/a^2再问:第一步我懂了...最后那两个怎么得出来的?f'(x)和f'(a)再答:f'(

设x,y属于(0,正无穷),且xy-(x+y)=1,求x+y的最小值

x+y=xy-1≤1/4*(x+y)^2-1,因为x、y均为正,所以x+y为正!解出上面的不等式,得到a≥2+2√2.此即为x+y的最小值.当x=y时,取得!此时有:x^2-2x=1解之得:x=y=1

若lim[f(x)+f'(x)]=0,x趋于正无穷且f'(x)在0到正无穷上连续,证明limf(x)=limf'(x)=

无穷/无穷型的洛必达法则limf(x)=lime^xf(x)/e^x洛必达法则得=lime^x(f(x)+f'(x)/e^x=limf(x)+f'(x)=0,于是limf'(x)=limf(x)+f'

设limf(x)=∞,(x->0),则当x->0时,一定是无穷小量的是()

limf(x)=∞,∞分为+∞和-∞,当limf(x)=-∞时,lime^(-f(x))=+∞

为什么当lim x趋于正无穷,f(1/x)=A,则x趋向于0,limf(x)=A?

时,limf(x)=正无穷,所以函数无界.说明:只有在闭区间连续的函数才有界.如果增加条件当x趋于正无穷时,limf(x)=1.那么在半闭半开区间[0,

设f(x)在(负无穷,正无穷)上连续,且f(x)极限存在,证明f(x)为有界函数

lim(x->∞)f(x)=A即对任意的ε>0(那么不妨取ε=1),存在X>0,使|x|>X时有|f(x)-A|

设limf(x)=0请证明limf(x)sinx=0 x→x0 x→x0

limf(x)sinx=limf(x)*limsinx=0*0=0再问:limsinx区域值不是(-1,1)再答:x->0时,sinx->0

设f(x)在0到正无穷大上可导,f(x)>0,limf(x)=1(x趋向正无穷大),若lim[f(x+nx)/f(x)]

证:由lim[f(x+nx)/f(x)]^(1/n)=e^(1/x),(n趋向于0)得e^[f(x+nx)-f(x)]/f(x)*(1/n)=e^(1/x),),(n趋向于0)得lim[f(x+nx)

设函数f(x)是定义在(负无穷,正无穷)上的增函数,如果f(1-ax-x)

由于f(x)在R上恒是增函数,则有1-ax-x0恒成立讨论:当a小于-1时,不等式(a+1)x-a+1>0,保证当x=1时成立即可,而x=1时也是恒成立当a等于-1时原不等式恒成立当a大于-1时,不等

高数 证明limf(x)=A【x趋于无穷大】与limf(x)=limf(x)=A【x分别趋于正无穷与负无穷】是充要条件

必要性:因为limf(x)=A【x趋于无穷大】,所以任给正数ε,存在正数M,当│x│>M时,有│f(x)-A│M时,有│f(x)-A│