设L为圆周X²+Y²=2的逆时针

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 13:44:16
设L为圆周X²+Y²=2的逆时针
计算∫L(x^2+3y)dx+(y^2-x)dy 其中L为上半圆周y=√(4x-x^2)从O(0,0)到A(4,0)

积分曲线为圆心在(2,0),半径为2的上半圆周,补充曲线L‘:y=0上从(4,0)到(0,0)的一段,这样L+L’构成了闭曲线,可以用格林公式计算.设P=x^2+3y,Q=y^2-x,则Q‘x=-1,

设L为取正向的圆周x2+y2=9,则曲线积分∮L(2xy-2y)dx+(x2-4x)dy=______.

设D为圆周L的内部,P=2xy-2y,Q=x2-4x.利用格林公式可得,∮L(2xy-2y)dx+(x2-4x)dy=∬D(∂Q∂x−∂P∂y)dxdy=∬D((2x−4)−(2x−2)dxdy=−2

求曲线积分∫根号(x^2+y^2)ds,其中L为圆周x^2+y^2=-2y

http://zhidao.baidu.com/question/1894230337967359940.html?oldq=1那天我答得一道题,跟这个非常非常像,你比着做吧.

计算I=∮1/x*arctan(y/x)dx+2/y*arctan(x/y)dy,L为圆周x^2+y^2=1,x^2+y

首先由格林公式得∮Pdx+Qdy=∫∫(Q'(x)-P'(y))dxdy然后化为极坐标的形式积分就可以出来了!我也是新手,一些数学符号弄不出来,希望你能看懂,当然高数的内容还是要多看课本,仔细比较,多

设L为平面区域D:x^2+y^2+4x-2y

取L:x²+y²+4x-2y≤0===>(x+2)²+(y-1)²≤5∮L(x²-y)dx+(-y²+2x)dy=∫∫D[∂/&

求∫L{(x+y)/(x^2+y^2)dx-(x+y)/(x^2+y^2)dy},其中L为圆周x^2+y^2=a^2(按

直接用第二型积分的计算公式.圆的参数方程为x=acost,y=asint,dx=-asintdt,dy=acostdt,逆时针方向对应的t从0到2pi.代入得原积分=积分(从0到2pi)[(acost

设A(x1,y1),B(x2,y2)两点在抛物线y=2x^2上,l是AB的垂直平分线.当l的斜率为2时,求l在y轴上的截

设AB中点M(xm,ym),设AB的垂直平分线l:y=2x+b由kAB=-1/2,设lAB:y=-1/2x+m因为A,B在物线y=2x^2上y1=2x1^2y2=2x2^2y1-y2=2(x1+x2)

求∮[(X+Y)dX/(X^2+Y^2)-(X-Y)dy/(X^2+Y^2)](其中L为圆周x^2+y^2=a^2),逆

P=(x+y)/(x^2+y^2)Q=(y-x)/(x^2+y^2)dQ/dx=(-(x^2+y^2)-2x(y-x))/(x^2+y^2)^2dP/dy=((x^2+y^2)-2y(x+y))/(x

计算∫L(x^2-2y)dx+(x+y^2siny)dy,其中L是圆周x^2+y^2=2x的正向曲线,

∵L圆周x^2+y^2=2x的半径是1∴L圆周面积∫∫dxdy=π*1^2=π(S表示L圆周x^2+y^2=2x区域)故∫L(x^2-2y)dx+(x+y^2siny)dy=∫∫[α(x+y^2sin

第一型曲线积分的问题:1.计算∫下标L|y| ds,其中L为右半单位圆周:x^2+y^2=1,x>=0

因为所给曲线为关于x轴对称的半圆吧?我们可以用对称性,直接研究第一象限中的曲线部分吧?再乘以2不完了吗?因此绝对值可以去掉了吧?用极坐标代换简单的……分别计算简单,没有什么捷径可走的,分成两个曲线计算

设L为取正向的圆周x²+y²=9,求曲线积分∮(2xy-2y)dx+(x²-4x)dy的值

用参数方程呗,x=3cost,y=3sint,t从0到2π,结果是-18π再问:什么叫做正向的圆周啊再答:就是逆时针,t从0到2π

求曲线积分I=∫L(e^(x^2+y^2)^(1/2)) ds,其中L为圆周x^2+y^2=R^2

I=∫L(e^(x^2+y^2)^(1/2))ds=∫Le^(R)ds=e^R∫Lds=e^R·2πR=2πRe^R

求曲线积分fxy^2dy-x^2ydx其中L为圆周x^2+y^2=a^2的正向,

因为P=-x^2y,Q=xy^2.所以Py=-x^2,Qx=y^2.利用格林公式:∮cP(x,y)dx+Q(x,y)dy=∫∫D(dQ/dx-dP/dy)dxdy,其中c是的取正向的边界曲线.故原式=

设L为取正向的圆周x²+y²=4,则曲线积分∫L(x²+y)dx+(x-y²)d

用格林公式将一个封闭曲线上的线积分化为在此封闭区域内的面积分∫L(x²+y)dx+(x-y²)dy=(在曲线L围成的封闭区域上积分)∫∫{[∂(x-y²)/&

设L为取正向圆周的X^2+Y^2=1,求∫(-y)dx+xdy

设P(x,y)=-yQ(x,y)=x那么αP/αy=-1αQ/αx=1根据格林公式(不会自己去查)原式=∫∫[(αQ/αx)-(αP/αy)]dxdy=∫∫2dxdy=2π

设L为逆时针方向的圆周x^2y^2=9则曲线积分∫L(e^(x-y)+xy)dx+(siny+e^(x-y))dy=?

既然是求闭曲线积分,就用格林公式化为二重积分那个负号应该是题目打印有误,如果是负的,曲线积分转化为二重积分∫∫(-x)dxdy由于积分区域是圆x^2+y^2=9,关于y轴对称,所以∫∫(-x)dxdy