设L为沿上半圆周x² y²=2x从点(0,0)到(1,1)的曲线弧,把∫
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:13:17
积分曲线为圆心在(2,0),半径为2的上半圆周,补充曲线L‘:y=0上从(4,0)到(0,0)的一段,这样L+L’构成了闭曲线,可以用格林公式计算.设P=x^2+3y,Q=y^2-x,则Q‘x=-1,
令P=x^2-y,Q=-x-(cosy)^2∵αP/αy=αQ/αx=-1∴由格林定理知,此曲线积分与路径无关,只与始点和终点有关于是,计算此积分取路径为:y=0,0≤x≤1故I=∫x^2dx=1/3
这个可以补上y=0处的线段L1:0
利用格林公式设P=e^xsiny-2yQ=e^xcosy-z(这儿不可能是z,是x还是2呢,先作为2来解)Q对x求偏导数=e^xcosy,P对y求偏导数=e^xcosy-2差为2不等于0连接半圆的直径
设D为圆周L的内部,P=2xy-2y,Q=x2-4x.利用格林公式可得,∮L(2xy-2y)dx+(x2-4x)dy=∬D(∂Q∂x−∂P∂y)dxdy=∬D((2x−4)−(2x−2)dxdy=−2
P=y+xe^2y,Q=x^2*e^2y+1aP/ay=1+2xe^2yaQ/ax=2xe^2y作辅助线AO:y=0,x:4->0原式=∫L+AO-∫AO=∫∫1dxdy-∫(4,0)xdx=1/2π
x^2+y^2=4x==>(x-2)^2+y^2=4若L是逆时针的话∫L(x^2+y)dx+(2x-y^2)dy=∫∫D[(2)-(1)]dxdy=∫∫Ddxdy=4π若L是顺时针==>∫L(x^2+
http://zhidao.baidu.com/question/1894230337967359940.html?oldq=1那天我答得一道题,跟这个非常非常像,你比着做吧.
首先由格林公式得∮Pdx+Qdy=∫∫(Q'(x)-P'(y))dxdy然后化为极坐标的形式积分就可以出来了!我也是新手,一些数学符号弄不出来,希望你能看懂,当然高数的内容还是要多看课本,仔细比较,多
补L1:y=0,x:0→a则L+L1为封闭曲线∮(L+L1)(e^xsiny-ay+a)dx+(e^xcosy-a)dy用格林公式=∫∫(e^xcosy-e^xcosy+a)dxdy积分区域D为半圆=
直接用第二型积分的计算公式.圆的参数方程为x=acost,y=asint,dx=-asintdt,dy=acostdt,逆时针方向对应的t从0到2pi.代入得原积分=积分(从0到2pi)[(acost
因为所给曲线为关于x轴对称的半圆吧?我们可以用对称性,直接研究第一象限中的曲线部分吧?再乘以2不完了吗?因此绝对值可以去掉了吧?用极坐标代换简单的……分别计算简单,没有什么捷径可走的,分成两个曲线计算
用参数方程呗,x=3cost,y=3sint,t从0到2π,结果是-18π再问:什么叫做正向的圆周啊再答:就是逆时针,t从0到2π
补线段L1:y=0,x:-a→a则L+L1为封闭曲线,可以用格林公式∮(L+L1)xy²dy-x²ydx=∫∫(y²+x²)dxdy=∫[0→2π]dθ∫[0→
I=∫L(e^(x^2+y^2)^(1/2))ds=∫Le^(R)ds=e^R∫Lds=e^R·2πR=2πRe^R
用格林公式将一个封闭曲线上的线积分化为在此封闭区域内的面积分∫L(x²+y)dx+(x-y²)dy=(在曲线L围成的封闭区域上积分)∫∫{[∂(x-y²)/&
设P(x,y)=-yQ(x,y)=x那么αP/αy=-1αQ/αx=1根据格林公式(不会自己去查)原式=∫∫[(αQ/αx)-(αP/αy)]dxdy=∫∫2dxdy=2π
既然是求闭曲线积分,就用格林公式化为二重积分那个负号应该是题目打印有误,如果是负的,曲线积分转化为二重积分∫∫(-x)dxdy由于积分区域是圆x^2+y^2=9,关于y轴对称,所以∫∫(-x)dxdy