设M是3阶实对称方阵,令A=M2 1,B=M4 1,证明A B正定方阵
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 18:29:46
因为C=AB是m*m阶矩阵,又因为r(A)≤n,同理r(B)≤n,由公式r(AB)≤min[r(A),r(B)]得r(AB)≤n,而m﹥n,所以|AB|=0,所以C=AB不可逆.“不可逆”等价于“方阵
CB^n=ACB^(n-1)=...=A^n*B所以任何多项式F有CF(B)=F(A)C所以任何R事B的特征值X属于B的R-根子空间,则存在n有(R-B)^nX=0则(R-A)^nCX=C(R-B)^
因为A^2=A所以A的特征值只能是0和1由于r(A)=r所以A的特征值为1,...,1(r个),0,...,0(n-r个)--这里用到A可对角化所以2E-A的特征值为1,...,1(r个),2,...
A的m次方的特征值=A的特征值的m次方,故先求A的m次方的特征值.既然A的m次方=0,0矩阵的特征值当然是0,故A的m次方的特征值为0.故A的特征值=0.
啊,这个其实是比较显然的.每一行、每一列只有1个1,其它都是0的矩阵叫:permutationmatrix,中文叫:置换矩阵.每一个置换矩阵表示了一个置换变换.置换可以分解为轮换,设n阶矩阵分解为k个
首先要注意a1,a2,a3线性无关,然后(b,Ab,A^2b)=(a1,a2,a3)*V,其中V=1x1x1^21x2x2^21x3x3^2是Vandermonde矩阵,由于x1,x2,x3互不相同,
OK 这个有图片 请点击看大图
1.直接看A*A的对角元即可.2.B=(E-A)^{-1}即得.3.方法同上.4.A=(B+E)^{-1}-E,故特征值都非零.5.直接看分量.6.利用A*adj(A)=|A|*E即得.7.(E+BA
正确因为B可逆所以RA(B)=R(A)=m.知识点:若P,Q可逆,则R(PA)=R(AQ)=R(PAQ)=R(A)再问:谢谢!!!
证:∵A^2=A∴对于任意正整数k,A^k=A根据二项式展开【C(n,k)代表组合数】(A+I)^m=C(m,0)[A^m]+C(m,1)[A^(m-1)]+C(m,2)[A^(m-2)]+……+C(
第一题:A^3=A^2*A=0则有秩(A^2)+秩(A)
将A的第1列依次与前一列交换(不改变B的各列之间的相对位置)一直交换到第1列,共交换n次同样,A的第2列依次与前一列交换,一直交换到第2列,共交换n次......交换mn次,化为A0CB所以行列式=(
注意A的列实际上就是单位阵的4个列向量的一个排列而已,也就是说Ae1=ej1,Ae2=ej2,...,Aen=ejn,其中e1e2...,e4是单位阵的4个列.因此存在整数k1使得A^(k1)e1=e
设k1a+k2,Aa+,.+km,A^(m-1)a=0①①左乘A^﹙m-1﹚k1A^﹙m-1﹚a=0A^﹙m-1﹚a≠0∴k1=0①成为k2,Aa+,.+km,A^(m-1)a=0②②左乘A^﹙m-2
Ax=axA^mx=A^m-1Ax=aA^m-1x=...=a^mx
同楼上,认为Am表示A^m,也就是A的m次方,En表示n阶单位阵A^m=0则En-A^m=En,En+A^m=En因为En^m=En下面就是a^m-b^m和a^m+b^m的展开式了比如En-A^m=E
这类求证一个已知矩阵式另一个已知矩阵的逆矩阵的题型思路是证明它们的乘积等于单位阵请见下图
结论是由秩的定义得出的.经济数学团队帮你解答,请及时评价.
由于属于不同特征值的特征向量线性无关所以β1,β2是B的列向量组的极大无关组所以r(B)=2β1^Tβ2=0--实对称矩阵属于不同特征值的特征向量正交
如果知道Laplace展开定理,直接对前m行展开即可如果知道行列式乘积定理,可以做分解[AB;0C]=[IB;0,C]*[A0;0;I]对[IB;0,C]按第一列展开并归纳,对[A0;0;I]按最后一